John and Uniform Domains in Generalized Siegel Boundaries

Springer Science and Business Media LLC - Tập 53 - Trang 921-945 - 2019
Roberto Monti1, Daniele Morbidelli2
1Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, Padova, Italy
2Dipartimento di Matematica, Università di Bologna, Bologna, Italy

Tóm tắt

Given the pair of vector fields X = ∂x + |z|2my∂t and Y = ∂y −|z|2mx∂t,where (x,y,t) = , we give a condition on a bounded domain which ensures that Ω is an (ε,δ)-domain for the Carnot-Carathéodory metric. We also analyze the Ahlfors regularity of the natural surface measure induced on ∂Ω by the vector fields.

Tài liệu tham khảo

Capogna, L., Garofalo, N.: Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics. J. Fourier Anal. Appl. 4(4-5), 403–432 (1998) Capogna, L., Garofalo, N.: Ahlfors type estimates for perimeter measures in Carnot-Carathéodory spaces. J. Geom. Anal. 3, 455–497 (2006) Danielli, D, Garofalo, N, Nhieu, D-M: Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces. Mem. Amer. Math. Soc. 182(857), x + 119 (2006) Franchi, B., Lu, G., Wheeden, R.L.: A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type. Internat. Math. Res. Notices 1, 1–14 (1996) Garofalo, N., Nhieu, D.s-M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math. 49(10), 1081–1144 (1996). MR 1404326 (97i:58032) Garofalo, N., Nhieu, D.M.: Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathodory spaces. J. Anal. Math. 74, 67–97 (1998) Gerosa, D., Monti, R., Morbidelli, D.: Trace theorems for Martinet-type vector fields in the characteristic case. Commun. Contemp. Math. https://doi.org/10.1142/S0219199719500664 Greshnov, A.V.: On uniform and NTA-domains on Carnot groups. Siberian Math. J. 42(5), 851–864 (2001) Greshnov, A.V.: The geometry of cc-balls and constants in the ball-box theorem on Heisenberg group algebras. Sib. Math. J. 55(5), 849–865 (2014) Greshnov, A.V.: The uniformity of cc-balls on a class of 2-step Carnot groups. (Russian. English Summ.) Sib. Èlektron. Mat. Izv. 15, 1182–1197 (2018) Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (688), x + 101 (2000) Jerison, David: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53(2), 503–523 (1986) Monti, R., Morbidelli, D.: Trace theorems for vector fields. Math. Z. 239(4), 747–776 (2002) Monti, R., Morbidelli, D.: John domains for the control distance of diagonal vector fields. J. Anal. Math. 92, 259–284 (2004) Monti, R., Morbidelli, D.: Non-tangentially accessible domains for vector fields. Indiana Univ. Math. J. 54(2), 473–498 (2005). MR 2136818 Monti, R., Morbidelli, D.: Regular domains in homogeneous groups. Trans. Amer. Math. Soc. 357(8), 2975–3011 (2005) Martio, O., Sarvas, J.: Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I Math. 4(2), 383–401 (1979) Monti, R., Serra Cassano, F.: Surface measures in Carnot-Carathéodory spaces. Calc. Var. Partial Differ. Equ. 13(3), 339–376 (2001) Negrini, P., Scornazzani, V.: Wiener criterion for a class of degenerate elliptic operators. J. Differ. Equ. 66(2), 151–164 (1987) Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields. I. Basic properties. Acta Math. 155(1-2), 103–147 (1985) Romanovskiĭ, N.N.: Integral representations and embedding theorems for functions defined on the Heisenberg groups Hn. St. Petersburg Math. J. 16(2), 349–375 (2005) Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices 2, 27–38 (1992) Vodop’yanov, S.K., Greshnov, A.V.: On the continuation of functions of bounded mean oscillation on spaces of homogeneous type with intrinsic metric. Siberian Math. J. 36(5), 873–901 (1995)