Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Dự đoán tiếng ồn của dòng thổi bằng cách tiến hành từng bước các trường hình ảnh PIV tomographic đơn một lần chụp
Tóm tắt
Nghiên cứu này kết hợp những tiến bộ mới nhất trong việc tiến hành từng bước các trường vectơ ba chiều từ đo tốc độ hình ảnh hạt bằng phương pháp tomographic, với một phiên bản điều chỉnh của công thức Lighthill, nhằm dự đoán tiếng ồn của dòng thổi ở xa. Các trường vectơ vận tốc ba chiều của dòng chảy được khôi phục từ một thể tích tomographic có kích thước $$4 \times 3 \times 9.5 D_{j}^3$$, với $$D_{j} = 5 cm$$ là đường kính lối thoát của dòng chảy. (Số Mach lối thoát của dòng thổi $$M_{j}$$ nằm trong khoảng từ 0.10 đến 0.20.) Các trường vectơ thu được được sử dụng làm đầu vào cho một quy trình phát triển gần đây để tiến hành từng bước trường xoáy, dựa trên phương pháp vortex-in-cell. Điều này cho ra các chuỗi thời gian của mỗi trường vận tốc ba chiều, từ đó áp lực ở xa được tính toán thông qua tương tự âm học Lilley (thông qua việc đánh giá tensor ứng suất Lighthill). Kết quả cho thấy ước tính phổ tiếng ồn ở xa có sự so sánh tốt với phổ được đo trực tiếp từ một micrô ở xa trong cơ sở A-tunnel anechoic của TU Delft, trong khoảng số Strouhal từ khoảng 1 đến 12.
Từ khóa
#tiếng ồn dòng thổi #đo tốc độ hình ảnh hạt #PIV tomographic #số Mach #phương pháp vortex-in-cell #phổ tiếng ồnTài liệu tham khảo
Adrian RJ, Yao CS (1985) Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Appl Opt 24(1):44
Aleyasin SS, Tachie MF, Koupriyanov M (2017) PIV measurements in the near and intermediate field regions of jets issuing from eight different nozzle geometries. Flow Turbul Combust 99(2):329–351
Anderson ABC (1956) Vortex-ring structure-transition in a jet emitting discrete acoustic frequencies. J Acoust Soc Am 28(5):914–921
Baars WJ, Murray NE, Tinney CE (2021) A proper framework for studying noise from jets with non-compact sources. J Fluid Mech 929:A23
Bastin F, Lafon P, Candel S (1997) Computation of jet mixing noise due to coherent structures: the plane jet case. J Fluid Mech 335:261–304
Bernal PL, Roshko A (1986) Streamwise vortex structure in plane mixing layers. J Fluid Mech 170(1):499–525
Bogey C, Bailly C (2007) An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets. J Fluid Mech 583:71–97
Bogey C, Bailly C, Juvé D (2003) Noise investigation of a high subsonic, moderate reynolds number jet using a compressible les. Theor Comput Fluid Dyn 16(4):273–297
Boillot A, Prasad AK (1996) Optimization procedure for pulse separation in cross-correlation PIV. Exp Fluids 21(2):87–93
Breaky DES, Jordan P, Cavalieri AVG, Nogueira P, Léon O, Colonius T, Rodrìguez D (2017) Experimental study of turbulent-jet wave packets and their acoustic efficiency. Phys Rev Fluids 2:124601
Bruun HH (1995) Hot wire anemometry: principles and signal analysis. Oxford University Press, Oxford
Cavalieri AVG, Jordan P, Colonius T, Gervais Y (2012) Axisymmetric superdirectivity in subsonic jets. J Fluid Mech 704:388–420
Charonko JJ, King CV, Smith BL, Vlachos PP (2010) Assessment of pressure field calculations from particle image velocimetry measurements. Meas Sci Technol 21(10):105401
Christiansen IP (1973) Numerical simulation of hydrodynamics by the method of point vortices. J Comput Phys 13(3):363–379
Citriniti J, George WK (2000) Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J Fluid Mech 418(137):137–166
Colonius T, Lele SK, Moin P (1997) Sound generation in a mixing layer. J Fluid Mech 330:375–409
Courant R, Friedrichs K, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74
Crow SC, Champagne FH (1971) Orderly structure in jet turbulence. J Fluid Mech 43:547–591
de Kat R, van Oudheusden BW (2012) Instantaneous planar pressure determination from PIV in turbulent flow. Exp Fluids 52(5):1089–1106
Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle imagee velocimetry. Exp Fluids 41:933–947
Fiscaletti D, Ragni D, Overmars FJ, Westerweel J, Elsinga E (2022) Tomographic long-distance \(\mu\)PIV to investigate the small scales of turbulence in a jet at high Reynolds number. Exp Fluids 63(9):1–6
Freund JB (2001) Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J Fluid Mech 438:277–305
Fu Z, Agarwal A, Cavalieri AVG, Jordan P, Brès GA (2017) Turbulent jet noise in the absence of coherent structures. Phys Rev Fluids 2(6):064601
Ghaemi S, Ragni D, Scarano F (2012) PIV-based pressure fluctuations in the turbulent boundary layer. Exp Fluids 53(6):1823–1840
Glauser MN, George WK (1987) Orthogonal decomposition of the axisymmetric jet mixing layer including azimuthal dependence. Advances in turbulence. Springer, Berlin, Heidelberg, pp 357–366
Goldstein ME (1976) Aeroacoustics. McGraw-Hill, New York
Guj G, Carley M, Camussi R, Ragni A (2003) Acoustic identification of coherent structures in a turbulent jet. J Sound Vib 259(5):1037–1065
Herman GT, Lent A (1976) Iterative reconstruction algorithms. Comput Biol Med 6:273–294
Hewitt RE, Duck PW (2011) Pulsatile jets. J Fluid Mech 670:240–259
Hussain F (1986) Coherent structures and turbulence. J Fluid Mech 173:303–356
Hussein HJ, Capp SP, George WK (1994) Velocity measurements in a high-Reynolds-number momentum-conserving, axisymmetric, turbulent jet. J Fluid Mech 258(31):31–75
Iqbal M, Thomas F (2007) Coherent structure in a turbulent jet via a vector implementation of the proper orthogonal decomposition. J Fluid Mech 571(281):281–326
Jaunet V, Jordan P, Cavalieri AVG (2017) Two-point coherence of wave packets in turbulent jets. Phys Rev Fluids 2:024604
Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94
Jordan P, Colonius T (2013) Wave packets and turbulent jet noise. Ann Rev Fluid Mech 45:173–195
Jordan P, Schlegel M, Noack BR, Tinney CE (2007) Identifying noisy and quiet modes in a jet. AIAA Pap 2007-3602 16(4):273–297
Jung D, Gamard SG, George WK (2004) Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. the near-field region. J Fluid Mech 514(205):173–204
Kaushik M, Kumar R, Humrutha G (2015) Review of computational fluid dynamics studies on jets. Am J Fluid Dyn 5:1–11
Kerhervé F, Jordan P, Gervais Y, Valiere J, Braud P (2004) Two-point laser doppler velocimetry measurements in a Mach 1.2 cold supersonic jet for statistical aeroacoustic source model. Exp Fluids 37:419–437
Kerhervé F, Jordan P, Cavalieri AVG, Delville J, Bogey C, Juvé D (2012) Educing the source mechanism associated with downstream radiation in subsonic jets. J Fluid Mech 710:606–640
Ko NWM, Davies POAL (1971) The near field within the potential cone of subsonic cold jets. J Fluid Mech 50:49–78
Koumoutsakos P (2005) Multiscale flow simulations using particles. Ann Rev Fluid Mech 37:457–487
Kyle DM, Sreenivasan KR (1993) The instability and breakdown of a round variable-density jet. J Fluid Mech 249:619–664
Lasagna D, Buxton ORH, Fiscaletti D (2021) Near-field coherent structures in circular and fractal orifice jets. Phys Rev Fluids 6:044612
Lew PT, Mongeau L (2010) Noise prediction of a subsonic turbulent round jet using the lattice-boltzmann method. J Acoust Soc Am 128(3):1118–1127
Liepmann D, Gharib M (1992) The role of streamwise vorticity in the near field entrainment of round jets. J Fluid Mech 245:643–668
Lighthill MJ (1952) On sound generated aerodynamically. I. General theory. Proc R Soc A 211(1107):564–587
Lighthill MJ (1954) On sound generated aerodynamically. II. Turbulence as a source of sound. Proc R Soc A 222(1148):1–32
Lilley GM (1974) On the noise from jets. Noise mechanisms. CP-131 AGARD, pp 13.1–13.12
List EJ (1982) Turbulent jets and plumes. Ann Rev Fluid Mech 14:189–212
Mankbadi R, Liu JTC (1984) Sound generated aerodynamically revisited: large-scale structures in a turbulent jet as a source of sound. Phil Trans R Soc Lond A 311(1516):183–217
Martin JE, Meiburg E (1991) Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and azimuthal perturbations. J Fluid Mech 230:271–318
Matsuda T, Sakakibara J (2005) On the vortical structure in a round jet. Phys Fluids 17:025106
Merino-Martinez R, Rubio Carpio A, Lima Pereira TL, van Herk S, Avallone F, Ragni D, Kotsonis M (2020) Aeroacoustic design and characterization of the 3d-printed, open-jet, anechoic wind tunnel of delft university of technology. Appl Acoust 170:107504
Morris PJ (2009) A note on noise generation by large scale turbulent structures in subsonic and supersonic jets. Intl J Aeroacoustics 8(4):301–316
Morris PJ, Farassat F (2002) Acoustic analogy and alternative theories for jet noise prediction. AIAA J 40(4):671–680
Nogueira PAS, Cavalieri AVG, Jordan P, Jaunet V (2019) Large-scale streaky structures in turbulent jets. J Fluid Mech 873(211):211–237
Papamoschou D (2011) Wavepacket modeling of the jet noise source. AIAA Pap 2011–2835
Pinier JT, Glauser M (2017) Dual-time piv investigation of the sound producing region of the high-speed jet. AIAA Pap 2007–3857
Pröbsting S, Scarano F, Bernardini M, Pirozzoli S (2013) On the estimation of wall pressure coherence using time-resolved tomographic PIV. Exp Fluids 54(7):1–15
Raffel M, Willert CE, Wereley S, Kompenhans J (2007) Particle image velocimetry - a practical guide. Springer-Verlag, Berlin, Heidelberg
Ragni D, Ashok A, van Oudheusden BW, Scarano F (2009) Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry. Meas Sci Technol 20:074005
Samie M, Lavoie P, Pollard A (2021) Quantifying eddy structures and very-large-scale motions in turbulent round jets. J Fluid Mech 916(A2)
Sandham ND, Morfey CL, Hu Z (2006) Sound radiation from exponentially growing and decaying surface waves. J Sound Vib 294:355–361
Scarano F (2012) Tomographic PIV: principles and practice. Meas Sci Technol 24(1):012001
Scarano F, Moore P (2012) An advection-based model to increase the temporal resolution of PIV time series. Exp Fluids 52(4):919–933
Scarano F, Riethmuller ML (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26(6):513–523
Schneiders JFG, Dwight RP, Scarano F (2014) Time-supersampling of 3d-PIV measurements with vortex-in-cell simulation. Exp Fluids 55(3):1–15
Schneiders JFG, Pröbsting S, Dwight R, van Oudheusden BW, Scarano F (2016) Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer. Exp Fluids 57(53):1–14
Schneiders JFG, Avallone F, Pröbsting S, Ragni D, Scarano F (2018) Pressure spectra from single-snapshot tomographic PIV. Exp Fluids 59(57):1–15
Schram C, Hirschberg A (2003) Application of vortex sound theory to vortex pairing noise: sensitivity to errors in flow data. J Sound Vib 266:1079–1098
Schram C, Taubitz S, Anthoine J, Hirschberg A (2005) Theoretical/empirical prediction and measurement of the sound produced by vortex pairing in a low Mach number jet. J Sound Vib 281:171–187
Schrijer FFJ, Scarano F (2014) Effect of predictor-corrector filtering on the stability and spatial resolution of iterative PIV interrogation. Exp Fluids 45(5):927–941
Seiner JM, Ukeiley L, Ponton MK (1999) Jet noise source measurements using PIV. In: 5th AIAA/CEAS aeroacoustics conference and exhibit, Bellevue, WA, AIAA Paper. pp 99–1869
Suponitsky V, Sandham ND, Morfey CL (2010) Linear and nonlinear mechanisms of sound radiation by instability waves in subsonic jets. J Fluid Mech 658:509–538
Suzuki T (2010) A review of diagnostic studies on jet-noise sources and generation mechanisms of subsonically convecting jets. Fluid Dyn Res 42(1):014001
Tam CKW, Aurialt L (1999) Jet mixing noise from fine-scale turbulence. AIAA J 37(2):145–153
Tanna HK, Dean PD, Burrin RH (1976) The generation and radiation of supersonic jet noise, vol 3. Turbulent mixing noise data. Tech. Rep. AFAPL-TR-76-65-Vol.3, US Airforce Propulsion Laboratory
Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond 164(919):476–490
Tinney CE, Ukeiley LS, Glauser MN (2008) Low-dimensional characteristics of a transonic jet. Part 2. Estimate and far-field prediction. J Fluid Mech 615:53–92
van Oudheusden BW (2013) PIV-based pressure measurement. Meas Sci Technol 24:032001
Violato D, Scarano F (2011) Three-dimensional evolution of flow structures in transitional circular and chevron jets. Phys Fluids 23:124104
Violato D, Scarano F (2013) Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown. Phys Fluids 25(1):015112
Violato D, Moore P, Scarano F (2011) Lagrangian and eulerian pressure field evaluation of rod-airfoil flow from time-resolved tomographic PIV. Exp Fluids 50(4):1057–1070
Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16(3–4):236–247
Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8(12):1379–1392
Wieneke B (2015) PIV uncertainty quantification from correlation statistics. Meas Sci Technol 26(7):0744002
Wiener N (1930) Generalized harmonic analysis. Acta Math 55:117–258
Yule AJ (1978) Large structure in the mixing layer of a round jet. J Fluid Mech 89:413–432