Dự đoán tiếng ồn của dòng thổi bằng cách tiến hành từng bước các trường hình ảnh PIV tomographic đơn một lần chụp

Experiments in Fluids - Tập 63 - Trang 1-18 - 2022
Daniele Ragni1, Daniele Fiscaletti1, Woutijn J. Baars1
1Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

Tóm tắt

Nghiên cứu này kết hợp những tiến bộ mới nhất trong việc tiến hành từng bước các trường vectơ ba chiều từ đo tốc độ hình ảnh hạt bằng phương pháp tomographic, với một phiên bản điều chỉnh của công thức Lighthill, nhằm dự đoán tiếng ồn của dòng thổi ở xa. Các trường vectơ vận tốc ba chiều của dòng chảy được khôi phục từ một thể tích tomographic có kích thước $$4 \times 3 \times 9.5 D_{j}^3$$, với $$D_{j} = 5 cm$$ là đường kính lối thoát của dòng chảy. (Số Mach lối thoát của dòng thổi $$M_{j}$$ nằm trong khoảng từ 0.10 đến 0.20.) Các trường vectơ thu được được sử dụng làm đầu vào cho một quy trình phát triển gần đây để tiến hành từng bước trường xoáy, dựa trên phương pháp vortex-in-cell. Điều này cho ra các chuỗi thời gian của mỗi trường vận tốc ba chiều, từ đó áp lực ở xa được tính toán thông qua tương tự âm học Lilley (thông qua việc đánh giá tensor ứng suất Lighthill). Kết quả cho thấy ước tính phổ tiếng ồn ở xa có sự so sánh tốt với phổ được đo trực tiếp từ một micrô ở xa trong cơ sở A-tunnel anechoic của TU Delft, trong khoảng số Strouhal từ khoảng 1 đến 12.

Từ khóa

#tiếng ồn dòng thổi #đo tốc độ hình ảnh hạt #PIV tomographic #số Mach #phương pháp vortex-in-cell #phổ tiếng ồn

Tài liệu tham khảo

Adrian RJ, Yao CS (1985) Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Appl Opt 24(1):44 Aleyasin SS, Tachie MF, Koupriyanov M (2017) PIV measurements in the near and intermediate field regions of jets issuing from eight different nozzle geometries. Flow Turbul Combust 99(2):329–351 Anderson ABC (1956) Vortex-ring structure-transition in a jet emitting discrete acoustic frequencies. J Acoust Soc Am 28(5):914–921 Baars WJ, Murray NE, Tinney CE (2021) A proper framework for studying noise from jets with non-compact sources. J Fluid Mech 929:A23 Bastin F, Lafon P, Candel S (1997) Computation of jet mixing noise due to coherent structures: the plane jet case. J Fluid Mech 335:261–304 Bernal PL, Roshko A (1986) Streamwise vortex structure in plane mixing layers. J Fluid Mech 170(1):499–525 Bogey C, Bailly C (2007) An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets. J Fluid Mech 583:71–97 Bogey C, Bailly C, Juvé D (2003) Noise investigation of a high subsonic, moderate reynolds number jet using a compressible les. Theor Comput Fluid Dyn 16(4):273–297 Boillot A, Prasad AK (1996) Optimization procedure for pulse separation in cross-correlation PIV. Exp Fluids 21(2):87–93 Breaky DES, Jordan P, Cavalieri AVG, Nogueira P, Léon O, Colonius T, Rodrìguez D (2017) Experimental study of turbulent-jet wave packets and their acoustic efficiency. Phys Rev Fluids 2:124601 Bruun HH (1995) Hot wire anemometry: principles and signal analysis. Oxford University Press, Oxford Cavalieri AVG, Jordan P, Colonius T, Gervais Y (2012) Axisymmetric superdirectivity in subsonic jets. J Fluid Mech 704:388–420 Charonko JJ, King CV, Smith BL, Vlachos PP (2010) Assessment of pressure field calculations from particle image velocimetry measurements. Meas Sci Technol 21(10):105401 Christiansen IP (1973) Numerical simulation of hydrodynamics by the method of point vortices. J Comput Phys 13(3):363–379 Citriniti J, George WK (2000) Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J Fluid Mech 418(137):137–166 Colonius T, Lele SK, Moin P (1997) Sound generation in a mixing layer. J Fluid Mech 330:375–409 Courant R, Friedrichs K, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74 Crow SC, Champagne FH (1971) Orderly structure in jet turbulence. J Fluid Mech 43:547–591 de Kat R, van Oudheusden BW (2012) Instantaneous planar pressure determination from PIV in turbulent flow. Exp Fluids 52(5):1089–1106 Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle imagee velocimetry. Exp Fluids 41:933–947 Fiscaletti D, Ragni D, Overmars FJ, Westerweel J, Elsinga E (2022) Tomographic long-distance \(\mu\)PIV to investigate the small scales of turbulence in a jet at high Reynolds number. Exp Fluids 63(9):1–6 Freund JB (2001) Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J Fluid Mech 438:277–305 Fu Z, Agarwal A, Cavalieri AVG, Jordan P, Brès GA (2017) Turbulent jet noise in the absence of coherent structures. Phys Rev Fluids 2(6):064601 Ghaemi S, Ragni D, Scarano F (2012) PIV-based pressure fluctuations in the turbulent boundary layer. Exp Fluids 53(6):1823–1840 Glauser MN, George WK (1987) Orthogonal decomposition of the axisymmetric jet mixing layer including azimuthal dependence. Advances in turbulence. Springer, Berlin, Heidelberg, pp 357–366 Goldstein ME (1976) Aeroacoustics. McGraw-Hill, New York Guj G, Carley M, Camussi R, Ragni A (2003) Acoustic identification of coherent structures in a turbulent jet. J Sound Vib 259(5):1037–1065 Herman GT, Lent A (1976) Iterative reconstruction algorithms. Comput Biol Med 6:273–294 Hewitt RE, Duck PW (2011) Pulsatile jets. J Fluid Mech 670:240–259 Hussain F (1986) Coherent structures and turbulence. J Fluid Mech 173:303–356 Hussein HJ, Capp SP, George WK (1994) Velocity measurements in a high-Reynolds-number momentum-conserving, axisymmetric, turbulent jet. J Fluid Mech 258(31):31–75 Iqbal M, Thomas F (2007) Coherent structure in a turbulent jet via a vector implementation of the proper orthogonal decomposition. J Fluid Mech 571(281):281–326 Jaunet V, Jordan P, Cavalieri AVG (2017) Two-point coherence of wave packets in turbulent jets. Phys Rev Fluids 2:024604 Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94 Jordan P, Colonius T (2013) Wave packets and turbulent jet noise. Ann Rev Fluid Mech 45:173–195 Jordan P, Schlegel M, Noack BR, Tinney CE (2007) Identifying noisy and quiet modes in a jet. AIAA Pap 2007-3602 16(4):273–297 Jung D, Gamard SG, George WK (2004) Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. the near-field region. J Fluid Mech 514(205):173–204 Kaushik M, Kumar R, Humrutha G (2015) Review of computational fluid dynamics studies on jets. Am J Fluid Dyn 5:1–11 Kerhervé F, Jordan P, Gervais Y, Valiere J, Braud P (2004) Two-point laser doppler velocimetry measurements in a Mach 1.2 cold supersonic jet for statistical aeroacoustic source model. Exp Fluids 37:419–437 Kerhervé F, Jordan P, Cavalieri AVG, Delville J, Bogey C, Juvé D (2012) Educing the source mechanism associated with downstream radiation in subsonic jets. J Fluid Mech 710:606–640 Ko NWM, Davies POAL (1971) The near field within the potential cone of subsonic cold jets. J Fluid Mech 50:49–78 Koumoutsakos P (2005) Multiscale flow simulations using particles. Ann Rev Fluid Mech 37:457–487 Kyle DM, Sreenivasan KR (1993) The instability and breakdown of a round variable-density jet. J Fluid Mech 249:619–664 Lasagna D, Buxton ORH, Fiscaletti D (2021) Near-field coherent structures in circular and fractal orifice jets. Phys Rev Fluids 6:044612 Lew PT, Mongeau L (2010) Noise prediction of a subsonic turbulent round jet using the lattice-boltzmann method. J Acoust Soc Am 128(3):1118–1127 Liepmann D, Gharib M (1992) The role of streamwise vorticity in the near field entrainment of round jets. J Fluid Mech 245:643–668 Lighthill MJ (1952) On sound generated aerodynamically. I. General theory. Proc R Soc A 211(1107):564–587 Lighthill MJ (1954) On sound generated aerodynamically. II. Turbulence as a source of sound. Proc R Soc A 222(1148):1–32 Lilley GM (1974) On the noise from jets. Noise mechanisms. CP-131 AGARD, pp 13.1–13.12 List EJ (1982) Turbulent jets and plumes. Ann Rev Fluid Mech 14:189–212 Mankbadi R, Liu JTC (1984) Sound generated aerodynamically revisited: large-scale structures in a turbulent jet as a source of sound. Phil Trans R Soc Lond A 311(1516):183–217 Martin JE, Meiburg E (1991) Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and azimuthal perturbations. J Fluid Mech 230:271–318 Matsuda T, Sakakibara J (2005) On the vortical structure in a round jet. Phys Fluids 17:025106 Merino-Martinez R, Rubio Carpio A, Lima Pereira TL, van Herk S, Avallone F, Ragni D, Kotsonis M (2020) Aeroacoustic design and characterization of the 3d-printed, open-jet, anechoic wind tunnel of delft university of technology. Appl Acoust 170:107504 Morris PJ (2009) A note on noise generation by large scale turbulent structures in subsonic and supersonic jets. Intl J Aeroacoustics 8(4):301–316 Morris PJ, Farassat F (2002) Acoustic analogy and alternative theories for jet noise prediction. AIAA J 40(4):671–680 Nogueira PAS, Cavalieri AVG, Jordan P, Jaunet V (2019) Large-scale streaky structures in turbulent jets. J Fluid Mech 873(211):211–237 Papamoschou D (2011) Wavepacket modeling of the jet noise source. AIAA Pap 2011–2835 Pinier JT, Glauser M (2017) Dual-time piv investigation of the sound producing region of the high-speed jet. AIAA Pap 2007–3857 Pröbsting S, Scarano F, Bernardini M, Pirozzoli S (2013) On the estimation of wall pressure coherence using time-resolved tomographic PIV. Exp Fluids 54(7):1–15 Raffel M, Willert CE, Wereley S, Kompenhans J (2007) Particle image velocimetry - a practical guide. Springer-Verlag, Berlin, Heidelberg Ragni D, Ashok A, van Oudheusden BW, Scarano F (2009) Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry. Meas Sci Technol 20:074005 Samie M, Lavoie P, Pollard A (2021) Quantifying eddy structures and very-large-scale motions in turbulent round jets. J Fluid Mech 916(A2) Sandham ND, Morfey CL, Hu Z (2006) Sound radiation from exponentially growing and decaying surface waves. J Sound Vib 294:355–361 Scarano F (2012) Tomographic PIV: principles and practice. Meas Sci Technol 24(1):012001 Scarano F, Moore P (2012) An advection-based model to increase the temporal resolution of PIV time series. Exp Fluids 52(4):919–933 Scarano F, Riethmuller ML (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26(6):513–523 Schneiders JFG, Dwight RP, Scarano F (2014) Time-supersampling of 3d-PIV measurements with vortex-in-cell simulation. Exp Fluids 55(3):1–15 Schneiders JFG, Pröbsting S, Dwight R, van Oudheusden BW, Scarano F (2016) Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer. Exp Fluids 57(53):1–14 Schneiders JFG, Avallone F, Pröbsting S, Ragni D, Scarano F (2018) Pressure spectra from single-snapshot tomographic PIV. Exp Fluids 59(57):1–15 Schram C, Hirschberg A (2003) Application of vortex sound theory to vortex pairing noise: sensitivity to errors in flow data. J Sound Vib 266:1079–1098 Schram C, Taubitz S, Anthoine J, Hirschberg A (2005) Theoretical/empirical prediction and measurement of the sound produced by vortex pairing in a low Mach number jet. J Sound Vib 281:171–187 Schrijer FFJ, Scarano F (2014) Effect of predictor-corrector filtering on the stability and spatial resolution of iterative PIV interrogation. Exp Fluids 45(5):927–941 Seiner JM, Ukeiley L, Ponton MK (1999) Jet noise source measurements using PIV. In: 5th AIAA/CEAS aeroacoustics conference and exhibit, Bellevue, WA, AIAA Paper. pp 99–1869 Suponitsky V, Sandham ND, Morfey CL (2010) Linear and nonlinear mechanisms of sound radiation by instability waves in subsonic jets. J Fluid Mech 658:509–538 Suzuki T (2010) A review of diagnostic studies on jet-noise sources and generation mechanisms of subsonically convecting jets. Fluid Dyn Res 42(1):014001 Tam CKW, Aurialt L (1999) Jet mixing noise from fine-scale turbulence. AIAA J 37(2):145–153 Tanna HK, Dean PD, Burrin RH (1976) The generation and radiation of supersonic jet noise, vol 3. Turbulent mixing noise data. Tech. Rep. AFAPL-TR-76-65-Vol.3, US Airforce Propulsion Laboratory Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond 164(919):476–490 Tinney CE, Ukeiley LS, Glauser MN (2008) Low-dimensional characteristics of a transonic jet. Part 2. Estimate and far-field prediction. J Fluid Mech 615:53–92 van Oudheusden BW (2013) PIV-based pressure measurement. Meas Sci Technol 24:032001 Violato D, Scarano F (2011) Three-dimensional evolution of flow structures in transitional circular and chevron jets. Phys Fluids 23:124104 Violato D, Scarano F (2013) Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown. Phys Fluids 25(1):015112 Violato D, Moore P, Scarano F (2011) Lagrangian and eulerian pressure field evaluation of rod-airfoil flow from time-resolved tomographic PIV. Exp Fluids 50(4):1057–1070 Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16(3–4):236–247 Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8(12):1379–1392 Wieneke B (2015) PIV uncertainty quantification from correlation statistics. Meas Sci Technol 26(7):0744002 Wiener N (1930) Generalized harmonic analysis. Acta Math 55:117–258 Yule AJ (1978) Large structure in the mixing layer of a round jet. J Fluid Mech 89:413–432