Jean Leray: Sur le mouvement d’un liquide visqueux emplissant l’espace.

Jahresbericht der Deutschen Mathematiker-Vereinigung - Tập 119 Số 4 - Trang 249-272 - 2017
Reinhard Farwig1
1Darmstadt, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amann, H.: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2, 16–98 (2000)

Auscher, P., Tchamitchian, Ph.: Espaces critiques pour le système des équations de Navier-Stokes incompressibles (2008). arXiv:0812.1158v2

Borchers, W., Miyakawa, T.: L 2 $L^{2}$ Decay for the Navier-Stokes flow in halfspaces. Math. Ann. 282, 139–155 (1988)

Borchers, W., Miyakawa, T.: Algebraic L 2 $L^{2}$ decay for Navier-Stokes flows in exterior domains. Acta Math. 165, 189–227 (1990)

Borchers, W., Miyakawa, T.: Algebraic L 2 $L^{2}$ decay for Navier-Stokes flows in exterior domains. II. Hiroshima Math. J. 21, 621–640 (1991)

Borel, A., Henkin, G.M., Lax, P.D.: Jean Leray (1906–1998). Not. Am. Math. Soc. 47, 350–359 (2000)

Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. In: Handbook of Mathematical Fluid Dynamics, vol. III, pp. 161–244. North-Holland, Amsterdam (2004)

Cannone, M.: A generalization of a theorem by Kato on Navier-Stokes equations. Rev. Mat. Iberoam. 13, 515–541 (1997)

Cannone, M., Meyer, Y., Planchon, F.: Solutions auto-similaires des équations de Navier-Stokes in  R 3 $\mathbb{R}^{3}$ . Séminaire X-EDP, vol. VIII. Ecole Polytechnique, Palaiseau (1994)

Cannone, M., Planchon, F.: Self-similar solutions for Navier-Stokes equations in R 3 $\mathbb {R}^{3}$ . Commun. Partial Differ. Equ. 21, 179–193 (1996)

Chemin, J.-Y.: Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray. Semin. Congr. 9, 99–123 (2004), Soc. Math. France

Chern, S.S., Hirzebruch, F.: Wolf Prize in Mathematics, vol. 1. World Scientific, Singapore (2000)

Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21, 1233–1252 (2008)

Cheskidov, A., Friedlander, S., Shvydkoy, R.: On the energy equality for weak solutions of the 3D Navier-Stokes equations. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics, pp. 171–175. Springer, Berlin (2010)

Ekeland, I.: Obituary: Jean Leray (1906–1998). Nature 397, 482 (1999)

Escauriaza, L., Seregin, G.A., Šverák, V.: L 3 , ∞ $L_{3,\infty}$ -solutions of Navier-Stokes equations and backward uniqueness. Usp. Mat. Nauk 58, 3–44 (2003) (Russian). Russian Math. Surveys 58, 211–250 (2003) (English)

Farwig, R., Giga, Y., Hsu, P.-Y.: Initial values for the Navier-Stokes equations in spaces with weights in time. Funkc. Ekvacioj 59, 199–216 (2016)

Farwig, R., Giga, Y.: Well-chosen weak solutions of the instationary Navier-Stokes system and their uniqueness. Hokkaido Math. J. (to appear)

Farwig, R., Giga, Y., Hsu, P.-Y.: The Navier-Stokes equations with initial values in Besov spaces of type B q , ∞ 1 + 3 / q $B^{1+3/q}_{q, \infty}$ . Fachbereich Mathematik, Technische Universität, Darmstadt (2016). Preprint no. 2709

Farwig, R., Giga, Y., Hsu, P.-Y.: On the continuity of the solutions to the Navier-Stokes equations with initial data in critical Besov spaces. Fachbereich Mathematik, Technische Universität, Darmstadt (2016). Preprint no. 2710

Farwig, R., Kozono, H.: Weak solutions of the Navier-Stokes equations with non-zero boundary values in an exterior domain satisfying the strong energy inequality. J. Differ. Equ. 256, 2633–2658 (2014)

Farwig, R., Kozono, H., Wegmann, D.: Decay of non-stationary Navier-Stokes flow with nonzero Dirichlet boundary data. Indiana Univ. Math. J. (2016, accepted)

Farwig, R., Kozono, H., Wegmann, D.: Existence of strong solutions and decay of turbulent solutions of Navier-Stokes flow with nonzero Dirichlet boundary data. Manuscript 2016

Farwig, R., Kozono, H., Sohr, H.: An L q $L^{q}$ -approach to Stokes and Navier-Stokes in general domains. Acta Math. 195, 21–53 (2005)

Farwig, R., Kozono, H., Sohr, H.: Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence. Rend. Semin. Mat. Univ. Padova 125, 51–70 (2011)

Farwig, R., Riechwald, F.: Very weak solutions to the Navier-Stokes system in general unbounded domains. J. Evol. Equ. 15, 253–279 (2015)

Farwig, R., Sohr, H.: Optimal initial value conditions for the existence of local strong solutions of the Navier-Stokes equations. Math. Ann. 345, 631–642 (2009)

Farwig, R., Sohr, H., Varnhorn, W.: On optimal initial value conditions for local strong solutions of the Navier-Stokes equations. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 55, 89–110 (2009)

Farwig, R., Sohr, H., Varnhorn, W.: Extensions of Serrin’s uniqueness and regularity conditions for the Navier-Stokes equations. J. Math. Fluid Mech. 14, 529–540 (2012)

Farwig, R., Taniuchi, Y.: On the energy equality of Navier-Stokes equations in general unbounded domains. Arch. Math. 95, 447–456 (2010)

Faxén, H.: Fredholm’s integral equations in the hydrodynamics of viscous fluids. Ark. Mat. Astron. Fys. 21A(14), 1–40 (1929)

Fefferman, Ch.: Existence and smoothness of the Navier-Stokes equation. http://www.claymath.org/sites/default/files/navierstokes.pdf

Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

Galdi, G.P., Maremonti, P.: Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains. Arch. Ration. Mech. Anal. 94, 253–266 (1986)

Giga, Y.: Solution for semilinear parabolic equations in L p $L^{p}$ and regularity of weak solutions for the Navier-Stokes system. J. Differ. Equ. 61, 186–212 (1986)

Giga, Y., Miyakawa, T.: Solutions in L r $L_{r}$ of the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal. 89, 267–281 (1985)

Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

Hopf, E.: Ein allgemeiner Endlichkeitssatz der Hydrodynamik. Math. Ann. 117, 764–775 (1940, 1941)

Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

Kajikiya, R., Miyakawa, T.: On L 2 $L^{2}$ decay of weak solutions of the Navier-Stokes equations in R n $R^{n}$ . Math. Z. 192, 135–148 (1986)

Kantor, J.-M.: Jean Leray (1906–1988). Gaz. Math. 84(Suppl.) (2000), Soc. Math. France, Paris

Kato, T.: Strong L p $L^{p}$ -solutions of the Navier-Stokes equation in R m $\mathbb{R}^{m}$ , with applications to weak solutions. Math. Z. 187, 471–480 (1984)

Kiselev, A.A., Ladyzhenskaya, O.A.: On the existence and uniqueness of solutions of the non-stationary problems for flows of non-compressible fluids. Transl. Am. Math. Soc., Ser. 2 24, 79–106 (1963)

Kozono, H., Sohr, H.: Remark on uniqueness of weak solutions to the Navier-Stokes equations. Analysis 16, 255–271 (1996)

Kozono, H., Yamazaki, M.: Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space L n , ∞ $L^{n,\infty}$ . Houst. J. Math. 21, 755–799 (1995)

Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1963)

Leray, J.: Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 9, 1–82 (1933). PhD Thesis, published also as: Thèses françaises de l’entre-deux-guerres 142 (1933)

Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

Leray, J.: Aspects de la mécanique théorique des fluides. C. R. Acad. Sci., Sér. Gén. Vie II, 287–290 (1994)

Leray, J.: Autobiography (Extracts). Exposition virtuelle sur Jean Leray. Des Mathématiques à Nantes. http://www.math.sciences.univ-nantes.fr/fr/pages/354

Leray, J.: Essai sur les mouvements plans d’un fluide visqueux que limitent des parois. J. Math. Pures Appl. 13, 331–418 (1933)

Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Ann. Sci. Éc. Norm. Supér. 51, 45–78 (1934)

Lichtenstein, L.: Über einige Existenzprobleme der Hydrodynamik. Dritte Abhandlung. Permanente Bewegungen einer homogenen inkompressiblen zähen Flüssigkeit. Math. Z. 28, 387–415 (1928)

Lions, P.L., Masmoudi, N.: Unicité des solutions faibles de Navier-Stokes dans L N ( Ω ) $L^{N}(\varOmega)$ . C. R. Acad. Sci., Sér. 1 327, 491–496 (1998)

Málek, J., Nečas, J., Pokorný, M., Schonbek, M.E.: On possible singular solutions to the Navier-Stokes equations. Math. Nachr. 199, 97–114 (1999)

Masuda, K.: Weak solutions of the Navier-Stokes equations. Tohoku Math. J. 36, 623–646 (1984)

Meyer, Y.: Wavelets, Paraproducts and Navier-Stokes Equations. Current Developments in Mathematics. International Press, Boston (1997)

Mikhailov, A.S., Shilkin, T.N.: L 3 , ∞ $L_{3,\infty}$ -solutions to the 3D-Navier-Stokes system in a domain with a curved boundary. Zap. Nauč. Semin. POMI 336, 133–152 (2006) (Russian). J. Math. Sci. 143, 2924–2935 (2007) (English)

Miller, J.R., O’Leary, M., Schonbek, M.: Nonexistence of singular pseudo-self-similar solutions of the Navier-Stokes system. Math. Ann. 319, 809–815 (2001)

Miyakawa, T., Sohr, H.: On energy inequality, smoothness and large time behavior in L 2 $L^{2}$ for weak solutions of the Navier-Stokes equations in exterior domains. Math. Z. 199, 455–478 (1988)

Monniaux, S.: On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains. J. Funct. Anal. 195, 1–11 (2002)

Nečas, J., Růžička, M., Šverák, V.: Sur une remarque de J. Leray concernant la construction de solutions singulières des équations de Navier-Stokes. C. R. Acad. Sci., Sér. 1 Math. 323, 245–249 (1996)

Nečas, J., Růžička, M., Šverák, V.: On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176, 283–294 (1996)

Odqvist, F.K.G.: Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Math.Z. 32, 329–375 (1930)

Ohyama, T.: Interior regularity of weak solutions of the time-dependent Navier-Stokes equation. Proc. Jpn. Acad. 36, 273–277 (1960)

Oseen, C.W.: Sur les formules de Green généralisées qui se présentent dans l’hydrodynamique et sur quelques-unes de leurs applications. Acta Math. 34, 205–284 (1911)

Oseen, C.W.: Neuere Methoden und Ergebnisse in der Hydrodynamik. Akademische Verlagsgesellschaft, Leipzig (1927)

Rautmann, R.: On optimum regularity of Navier-Stokes solutions at time t = 0 $t=0$ . Math. Z. 184, 141–149 (1983)

Schonbek, M.E.: Large time behaviour of solutions to the Navier-Stokes equations. Commun. Partial Differ. Equ. 11, 733–763 (1986)

Schonbek, M.E.: Lower bounds of rates of decay for solutions to the Navier-Stokes equations. J. Am. Math. Soc. 4, 423–449 (1991)

Seregin, G.: On smoothness of L 3 , ∞ $L_{3,\infty}$ -solutions to the Navier-Stokes equations up to the boundary. Math. Ann. 332, 219–238 (2005)

Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 185–187 (1962)

Serrin, J.: The initial value problem for the Navier-Stokes equations. In: Langer, R.E. (ed.) Nonlinear Problems, pp. 69–98. University of Wisconsin Press, Madison (1963)

Shinbrot, M.: The energy equation for the Navier-Stokes system. SIAM J. Math. Anal. 5, 948–954 (1974)

Sigmund, A.M., Michor, P., Sigmund, K.: Leray in Edelbach. Math. Intell. 27(2), 41–45 (2005)

Sohr, H.: Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z. 184, 359–375 (1983)

Sohr, H.: A regularity class for the Navier-Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)

Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts. Birkhäuser, Basel (2001)

Sohr, H., von Wahl, W.: On the singular set and the uniqueness of weak solutions of the Navier-Stokes equations. Manuscr. Math. 49, 27–59 (1984)

Sohr, H., von Wahl, W., Wiegner, M.: Zur Asymptotik der Gleichungen von Navier-Stokes. Nachr. Akad. Wiss. Gött., 2, no. 3 (1986)

Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, New York, Oxford (1978). 1978

Tsai, T.-P.: On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates. Arch. Ration. Mech. Anal. 143, 29–51 (1998). Erratum: Arch. Ration. Mech. Anal. 147, 363 (1999)

Wiegner, M.: Decay results for weak solutions of the Navier-Stokes equations on R n $\mathbb{R}^{n}$ . J. Lond. Math. Soc. 35, 303–313 (1987)