Janus monolayers of transition metal dichalcogenides

Nature Nanotechnology - Tập 12 Số 8 - Trang 744-749 - 2017
Ang‐Yu Lu1, Hanyu Zhu2, Jun Xiao2, Chih‐Piao Chuu3, Yimo Han4, Ming‐Hui Chiu1, Chia-Chin Cheng5, Chih‐Wen Yang1, Kung‐Hwa Wei6, Yiming Yang7, Yuan Wang2, Dimosthenis Sokaras8, Dennis Nordlund8, Peidong Yang7, David A. Muller4, M. Y. Chou3, Xiang Zhang9, Lain‐Jong Li1
1Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
2NSF Nanoscale Science and Engineering Center, University of California, Berkeley, 94720, California, USA
3Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
4School of Applied & Engineering Physics, Cornell University, Ithaca, 14850, New York, USA
5Research Center for Applied Sciences, Academia Sinica, Taipei, 10617, Taiwan
6Department of Material Science and engineering, National Chiao Tung University, Hsinchu 300, Taiwan
7Department of Chemistry, University of California, Berkeley, 94720, California, USA
8SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025, California, USA
9Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

Shimazaki, Y. et al. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys. 11, 1032–1036 (2015).

Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

Yuan, H. et al. Zeeman-type spin splitting controlled by an electric field. Nat. Phys. 9, 563–569 (2013).

Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 . Nat. Phys. 9, 149–153 (2013).

Cheng, Y. C., Zhu, Z. Y., Tahir, M. & Schwingenschlögl, U. Spin–orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. Europhys. Lett. 102, 57001 (2013).

Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

Shi, Y., Li, H. & Li, L.-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015).

Liu, Y. et al. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7, 4202–4209 (2013).

Su, S.-H. et al. Band gap-tunable molybdenum sulfide selenide monolayer alloy. Small 10, 2589–2594 (2014).

Li, H. et al. Lateral growth of composition graded atomic layer MoS2(1–x)Se2x nanosheets. J. Am. Chem. Soc. 137, 5284–5287 (2015).

Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012).

Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech. 7, 490–493 (2012).

Yeh, J. J. & Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1≤Z≤103. At. Data Nucl. Data Tables 32, 1–155 (1985).

Seah, M. P. Simple universal curve for the energy-dependent electron attenuation length for all materials. Surf. Interface Anal. 44, 1353–1359 (2012).

Corn, R. M. & Higgins, D. A. Optical second harmonic generation as a probe of surface chemistry. Chem. Rev. 94, 107–125 (1994).

Kumar, N. et al. Second harmonic microscopy of monolayer MoS2 . Phys. Rev. B 87, 161403 (2013).

Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).

Bune, A. V. et al. Two-dimensional ferroelectric films. Nature 391, 874–877 (1998).

da Cunha Rodrigues, G. et al. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 6, 7572 (2015).

Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).

Hong, S. et al. High resolution study of domain nucleation and growth during polarization switching in Pb(Zr,Ti)O3 ferroelectric thin film capacitors. J. Appl. Phys. 86, 607–613 (1999).

Johann, F., Hoffmann, Á. & Soergel, E. Impact of electrostatic forces in contact-mode scanning force microscopy. Phys. Rev. B 81, 094109 (2010).

Becher, C. et al. Functional ferroic heterostructures with tunable integral symmetry. Nat. Commun. 5, 4295 (2014).

Wang, X. B. et al. The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film. Appl. Surf. Sci. 253, 1639–1643 (2006).

Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014).

Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2 . Nat. Nanotech. 10, 151–155 (2015).

Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).