JANPA: An open source cross-platform implementation of the Natural Population Analysis on the Java platform

Computational and Theoretical Chemistry - Tập 1050 - Trang 15-22 - 2014
Tymofii Y. Nikolaienko1, Leonid A. Bulavin1, Dmytro M. Hovorun2,3
1Taras Shevchenko National University of Kyiv, Faculty of Physics, 64/13, Volodymyrska Str., Kyiv 01601, Ukraine
2Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., Kyiv 03680, Ukraine
3Department of Molecular Biology, Biotechnology and Biophysics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 4h Akademika Hlushkova Ave., Kyiv 03127, Ukraine

Tài liệu tham khảo

Gonthier, 2012, Quantification of “fuzzy” chemical concepts: a computational perspective, Chem. Soc. Rev., 41, 4671, 10.1039/c2cs35037h McWeeny, 1955, On the basis of orbital theories, Proc. Roy. Soc. Lon. Ser. A, 232, 114, 10.1098/rspa.1955.0205 Mayer, 1986, Bond orders and valences from ab initio wave functions, Int. J. Quantum Chem., 29, 477, 10.1002/qua.560290320 Mayer, 2007, Bond order and valence indices: a personal account, J. Comput. Chem., 28, 204, 10.1002/jcc.20494 Okada, 1975, Electron pair concept and an extension of the Penney-Dirac bond order, Bull. Chem. Soc. Jpn., 48, 2025, 10.1246/bcsj.48.2025 Giambiagi, 1975, Sur la définition d’un indice de liaison (TEV) pour des bases non orthogonales. Propriétés et applications, J. Chim. Phys., 72, 15, 10.1051/jcp/1975720015 Wiberg, 1968, Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane, Tetrahedron, 24, 1083, 10.1016/0040-4020(68)88057-3 Johnson, 2010, Revealing noncovalent interactions, J. Am. Chem. Soc., 132, 6498, 10.1021/ja100936w Contreras-Garcia, 2011, NCIPLOT: a program for plotting noncovalent interaction regions, J. Chem. Theor. Comput., 7, 625, 10.1021/ct100641a Savin, 1997, ELF: the electron localization function, Angew. Chem. Int. Ed., 36, 1808, 10.1002/anie.199718081 Bader, 1990 Mayer, 1995, Non-orthogonal localized orbitals and orthogonal atomic hybrids derived from Mulliken’s population analysis, Chem. Phys. Lett., 242, 499, 10.1016/0009-2614(95)00748-S Mayer, 1996, Atomic orbitals from molecular wave functions: the effective minimal basis, J. Phys. Chem., 100, 6249, 10.1021/jp952779i Glendening, 2012, Natural bond orbital methods, WIREs Comput. Mol. Sci., 2, 1, 10.1002/wcms.51 Foster, 1980, Natural hybrid orbitals, J. Am. Chem. Soc., 102, 7211, 10.1021/ja00544a007 Weinhold, 2012, Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives, J. Comput. Chem., 33, 2363, 10.1002/jcc.23060 Reed, 1985, Natural population analysis, J. Chem. Phys., 83, 735, 10.1063/1.449486 Reed, 1988, Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint, Chem. Rev., 88, 899, 10.1021/cr00088a005 Some additional details on NBO transformation can be found at <http://www.chem.wisc.edu/~nbo5/web_nbo.htm> (accessed 27.10.13). Weinhold, 1998, Natural bond orbital methods, vol. 3, 1792 Weinhold, 2005 Weinhold, 2012 Wilkens, 2001, Natural J-coupling analysis: Interpretation of scalar J-couplings in terms of Natural Bond Orbitals, J. Am. Chem. Soc., 123, 12026, 10.1021/ja016284k Weinhold, 1988, Some remarks on nonorthogonal orbitals in quantum chemistry, J. Mol. Struct. Theochem., 165, 189, 10.1016/0166-1280(88)87018-0 Weinhold, 2001, Natural bond orbitals and extensions of localized bonding concepts, Chem. Educ. Res. Pract. Eur., 2, 91, 10.1039/B1RP90011K Weinhold, 2007, Valence and extra-valence orbitals in main group and transition metal bonding, J. Comput. Chem., 28, 198, 10.1002/jcc.20492 F. Weinhold, E.D. Glendening, NBO 6.0 Program Manual: Natural Bond Orbital Analysis Programs, <http://nbo6.chem.wisc.edu/nboman.pdf> (accessed 06.08.14). Dunnington, 2012, Generalization of natural bond orbital analysis to periodic systems: applications to solids and surfaces via plane-wave density functional theory, J. Chem. Theory Comput., 8, 1902, 10.1021/ct300002t Ohwaki, 2014, A method of orbital analysis for large-scale first-principles simulations, J. Chem. Phys., 140, 244105, 10.1063/1.4884119 Ince, 2012, The case for open computer programs, Nature, 482, 485, 10.1038/nature10836 Morin, 2012, Shining light into black boxes, Science, 336, 159, 10.1126/science.1218263 Cardona, 2012, Current challenges in open-source bioimage informatics, Nat. Methods, 9, 661, 10.1038/nmeth.2082 Joppa, 2013, Troubling trends in scientific software use, Science, 340, 814, 10.1126/science.1231535 Shamir, 2013, Practices in source code sharing in astrophysics, Astron. Comput., 1, 54, 10.1016/j.ascom.2013.04.001 Walters, 2013, Modeling, informatics, and the quest for reproducibility, J. Chem. Inf. Model., 53, 1529, 10.1021/ci400197w Pradal, 2013, Publishing scientic software matters, J. Comput. Sci., 4, 311, 10.1016/j.jocs.2013.08.001 Ram, 2013, Git can facilitate greater reproducibility and increased transparency in science, Source Code Biol. Med., 8, 7, 10.1186/1751-0473-8-7 JAMA: A Java Matrix Package <http://math.nist.gov/javanumerics/jama/> (accessed 27.10.13). Schaftenaar, 2000, Molden: a pre-and post-processing program for molecular and electronic structures, J. Comput.-Aided Mol. Des., 14, 123, 10.1023/A:1008193805436 The Molden Format <http://www.cmbi.ru.nl/molden/molden_format.html> (accessed 27.10.13). Jmol: an open-source Java viewer for chemical structures in 3D. <http://www.jmol.org/> (accessed 27.10.13). Jensen, 1999 Löwdin, 1970, On the nonorthogonality problem, Adv. Quantum Chem., 5, 185, 10.1016/S0065-3276(08)60339-1 Löwdin, 1955, Quantum theory of many-particle systems. I. Physical Interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction, Phys. Rev., 97, 1474, 10.1103/PhysRev.97.1474 Davidson, 1976, vol. 6 Davidson, 1972, Natural orbitals, Adv. Quantum Chem., 6, 235, 10.1016/S0065-3276(08)60547-X Drake, 2005, Variational methods, 619 Weinberger, 1974 Bruhn, 2006, Löwdin population analysis with and without rotational invariance, Int. J. Quantum Chem., 106, 2065, 10.1002/qua.20981 Harris, 1963, Discussion on natural expansions and properties of the chemical bond, Rev. Mod. Phys., 35, 629, 10.1103/RevModPhys.35.629 Landis, 2007, Valence and extra-valence orbitals in main group and transition metal bonding, J. Comput. Chem., 28, 198, 10.1002/jcc.20492 Miessler, 2003 Reed, 1983, Natural bond orbital analysis of near-Hartree–Fock water dimer, J. Chem. Phys., 78, 4066, 10.1063/1.445134 Carlson, 1957, Orthogonalization procedures and the localization of Wannier functions, Phys. Rev., 105, 102, 10.1103/PhysRev.105.102 Watkins, 2010 Engeln-Müllges, 1996 Accurate matrix multiplication in Matlab, <http://stackoverflow.com/questions/13729613/accurate-matrix-multiplication-in-matlab> (accessed 08.05.14). De Proft, 1996, On the performance of density functional methods for describing atomic populations, dipole moments and infrared intensities, Chem. Phys. Lett., 250, 393, 10.1016/0009-2614(96)00057-7 Szczepanik, 2012, Electron population analysis using a reference minimal set of atomic orbitals, Comp. Theor. Chem., 996, 103, 10.1016/j.comptc.2012.07.021 Krygowski, 2011, Sigma- and pi-electron structure of aza-azoles, J. Mol. Model., 17, 1427, 10.1007/s00894-010-0844-z A.J. Banks, M.S. Bollom, J.L. Holmes, J.J. Jacobsen, J.C. Kotz, J.W. Moore. Lithium-Periodic Table Live!. <http://www.chemeddl.org/resources/ptl/index.html>. Copyright © 1995, 1997, 1999, 2004, 2010 by Division of Chemical Education, Inc. The Chemical Education Digital Library (online): <http://www.chemeddl.org/resources/models360/models.php> (accessed 04.05.14). Turney, 2012, Psi4: an open-source ab initio electronic structure program, WIREs Comput. Mol. Sci., 2, 556, 10.1002/wcms.93 Neese, 2012, The ORCA program system, WIREs Comput. Mol. Sci., 2, 73, 10.1002/wcms.81 Valiev, 2010, NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations, Comput. Phys. Commun., 181, 1477, 10.1016/j.cpc.2010.04.018 Davidson, 1972, Properties and uses of natural orbitals, Rev. Modern Phys., 44, 451, 10.1103/RevModPhys.44.451 McWeeny, 1968, Symmetry properties of natural orbitals and geminals I. Construction of spin-and symmetry-adapted functions, Int. J. Quant. Chem., 2, 187, 10.1002/qua.560020203 Bingel, 1970, The symmetry behaviour of the first-order density matrix and its natural orbitals for linear molecules, Theor. Chim. Acta, 16, 319, 10.1007/BF00527080 Bingel, 1970, Symmetry properties of reduced density matrices and natural p-states, Adv. Quantum Chem., 5, 201, 10.1016/S0065-3276(08)60340-8 Hunter, 1974, Angular momentum adapted wavefunctions and their reduced transition density matrices, J. Chem. Phys., 60, 2670, 10.1063/1.1681425 Larson, 1979, The role of symmetry in representing reduced density operators and reduced transition density operators: general formulation with specific application to atomic systems, Int. J. Quantum Chem., 16, 121, 10.1002/qua.560160815 Kryachko, 1981, Symmetry properties of reduced density matrices, Adv. Quantum Chem., 14, 1, 10.1016/S0065-3276(08)60325-1 Landau, 1977, vol. 3