JAK inhibitors improve ATP production and mitochondrial function in rheumatoid arthritis: a pilot study

Springer Science and Business Media LLC - Tập 44 Số 1 - Trang 57-65
Valentina N Mihaylova1,2, Maria Kazakova1,2, Z Batalov3,4, Rositsa Karalilova3,4, Anastas Batalov3,4, Мaria Semerdjieva1,2
1Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
2Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
3Clinic of Rheumatology, University Hospital “Kaspela”, Plovdiv, Bulgaria
4Department of Propedeutics of Internal Diseases, Medical University-Plovdiv, Plovdiv, Bulgaria

Tóm tắt

AbstractRheumatoid arthritis (RA) is a chronic, systemic autoimmune disease associated by inflammation of the synovial tissue and autoantibody production. Oxidative stress and free radicals are known to be indirectly implicated in joint damage and cartilage destruction in RA. Several studies describe the presence of mitochondrial dysfunction in RA, but few of them follow the dynamics in energy parameters after therapy. The aim of our investigation is to evaluate the direct effect of JAK inhibitors on cellular metabolism (and under induced oxidative stress) in RA patients. Ten newly diagnosed RA patients were included in the study. Peripheral blood mononuclear cells (PBMCs) and plasma were isolated before and 6 months after therapy with JAK inhibitors. A real-time metabolic analysis was performed to assess mitochondrial function and cell metabolism in PBMCs. Sonographic examination, DAS28 and conventional clinical laboratory parameters were determined also prior and post therapy. A significant decrease in proton leak after therapy with JAK inhibitors was found. The increased production of ATP indicates improvement of cellular bioenergetics status. These findings could be related to the catalytic action of JAK inhibitors on oxidative phosphorylation which corresponds to the amelioration of clinical and ultra-sonographic parameters after treatment. Our study is the first to establish the dynamics of mitochondrial parameters in PBMCs from RA patients before and after in vivo therapy with JAK inhibitors.

Từ khóa


Tài liệu tham khảo

McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205–2219. https://doi.org/10.1056/NEJMra1004965

Bungau S, Behl T, Singh A, Sehgal A, Singh S, Chigurupati S, Vijayabalan S, Das S, Palanimuthu VR (2021) Targeting probiotics in rheumatoid arthritis. Nutrients 13(10):3376. https://doi.org/10.3390/nu13103376

Firestein GS, McInnes IB (2017) Immunopathogenesis of rheumatoid arthritis. Immunity 46(2):183–196. https://doi.org/10.1016/j.immuni.2017.02.006

Li M, Luo X, Long X, Jiang P, Jiang Q, Guo H, Chen Z (2021) Potential role of mitochondria in synoviocytes. Clin Rheumatol 40(2):447–457. https://doi.org/10.1007/s10067-020-05263-5. (Epub 2020 Jul 1. PMID: 32613391)

Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233(1):233–255. https://doi.org/10.1111/j.0105-2896.2009.00859.x

Lefèvre S, Knedla A, Tennie C et al (2009) Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med 15(12):1414–1420. https://doi.org/10.1038/nm.2050

Qiu J, Wu B, Goodman SB, Berry GJ, Goronzy JJ, Weyand CM (2021) Metabolic control of autoimmunity and tissue inflammation in rheumatoid arthritis. Front Immunol 12:652771. https://doi.org/10.3389/fimmu.2021.652771

Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 3:83–92. https://doi.org/10.2147/HP.S93413

Wang X, Fan D, Cao X et al (2022) The role of reactive oxygen species in the rheumatoid arthritis-associated synovial microenvironment. Antioxidants (Basel) 11(6):1153. https://doi.org/10.3390/antiox11061153

Sharma S, Singh Y, Sandhir R et al (2021) Mitochondrial DNA mutations contribute to high altitude pulmonary edema via increased oxidative stress and metabolic reprogramming during hypobaric hypoxia. Biochim Biophys Acta Bioenerg 1862(8):148431. https://doi.org/10.1016/j.bbabio.2021.148431

Kivanc D (2022) Dasdemir S 2022 The relationship between defects in DNA repair genes and autoinflammatory diseases. Rheumatol Int 42(1):1–13. https://doi.org/10.1007/s00296-021-04906-3. (Epub 2021 Jun 6 PMID: 34091703)

Nicolson G (2014) Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integr Med (Encinitas) 13(4):35–43

de Jong T, Semmelink J, Denis S, van de Sande M, Houtkooper R, van Baarsen L (2023) Altered lipid metabolism in synovial fibroblasts of individuals at risk of developing rheumatoid arthritis. J Autoimmun 134:102974. https://doi.org/10.1016/j.jaut.2022.102974

Clayton SA, MacDonald L, Kurowska-Stolarska M, Clark AR (2021) Mitochondria as key players in the pathogenesis and treatment of rheumatoid arthritis. Front Immunol 12:673916. https://doi.org/10.3389/fimmu.2021.673916

van Horssen J, van Schaik P, Witte M (2019) Inflammation and mitochondrial dysfunction: a vicious circle in neurodegenerative disorders? Neurosci Lett 710:132931. https://doi.org/10.1016/j.neulet.2017.06.050

Ma C, Wang J, Hong F, Yang S (2022) Mitochondrial dysfunction in rheumatoid arthritis. Biomolecules 12(9):1216. https://doi.org/10.3390/biom12091216

Yap HY, Tee SZ, Wong MM, Chow SK, Peh SC, Teow SY (2018) Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells 7(10):161. https://doi.org/10.3390/cells7100161

Tu J, Huang W, Zhang W, Mei J, Zhu CA (2021) Tale of two immune cells in rheumatoid arthritis: the crosstalk between macrophages and t cells in the synovium. Front Immunol 12:655477. https://doi.org/10.3389/fimmu.2021.655477

Radu AF, Bungau SG, Negru AP, Uivaraseanu B, Bogdan MA (2023) Novel potential janus kinase inhibitors with therapeutic prospects in rheumatoid arthritis addressed by in silico studies. Molecules (Basel, Switzerland) 28(12):4699. https://doi.org/10.3390/molecules28124699

Radu AF, Bungau SG (2023) Nanomedical approaches in the realm of rheumatoid arthritis. Ageing Res Rev 2023(87):101927. https://doi.org/10.1016/j.arr.2023.101927

Kostova T, Mihaylova V, Karalilova R, Batalov Z, Kazakova M, Batalov A (2022) Mitochondrial dysfunction and biological therapy: a new look at rheumatoid arthritis. Rheumatology (Bulgaria) 30(1):51–65. https://doi.org/10.35465/30.1.2022.pp51-65

Biniecka M, Canavan M, McGarry T et al (2016) Dysregulated bioenergetics: a key regulator of joint inflammation. Ann Rheum Dis 75(12):2192–2200. https://doi.org/10.1136/annrheumdis-2015-208476

Bykerk VP, Massarotti EM (2012) The new ACR/EULAR classification criteria for RA: how are the new criteria performing in the clinic. Rheumatology (Oxford) 51(Suppl 6):vi10–vi15. https://doi.org/10.1093/rheumatology/kes280

Prevoo ML, van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheumatism 38(1):44–48. https://doi.org/10.1002/art.1780380107

Backhaus M, Ohrndorf S, Kellner H, Strunk J, Backhaus TM, Hartung W, Sattler H, Albrecht K, Kaufmann J, Becker K, Sörensen H, Meier L, Burmester GR, Schmidt WA (2009) Evaluation of a novel 7-joint ultrasound score in daily rheumatologic practice: a pilot project. Arthritis Rheum 61(9):1194–1201. https://doi.org/10.1002/art.24646

Bruyn GA, Iagnocco A, Naredo E, Balint PV, Ultrasound Working Group et al (2019) OMERACT definitions for ultrasonographic pathologies and elementary lesions of rheumatic disorders 15 years on. J Rheumatol 46(10):1388–1393. https://doi.org/10.3899/jrheum.181095

Balogh E, Veale DJ, McGarry T et al (2018) Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis. Arthritis Res Ther 20(1):95. https://doi.org/10.1186/s13075-018-1592-1

Blanco LP, Kaplan MJ (2023) Metabolic alterations of the immune system in the pathogenesis of autoimmune diseases. PLoS Biol 21(4):e3002084. https://doi.org/10.1371/journal.pbio.3002084

Milaylova V, Batalov Z, Karalilova R, Kazakova M (2023) Energy metabolism as a parameter for evaluating the therapeutic effect in rheumatoid arthritis. Abstract Book of Science and Youth Conference, Bulgaria; p. 59

Hill B, Benavides G, Lancaster J, Ballinger S, Dell’Italia L, Zhang J, Darley-Usmar V (2012) Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem 393(12):1485–1512. https://doi.org/10.1515/hsz-2012-0198

Lopes de Melo JM, Laursen JC, Søndergaard-Heinrich N et al (2022) Increased mitochondrial proton leak and glycolysis in peripheral blood mononuclear cells in type-1-diabetes. Heliyon 8(12):e12304. https://doi.org/10.1016/j.heliyon.2022.e12304. (Published 2022 Dec 20)

Ana Y, Rojas Marquez JD, Fozzatti L et al (2021) An exacerbated metabolism and mitochondrial reactive oxygen species contribute to mitochondrial alterations and apoptosis in CD4 T cells during the acute phase of Trypanosoma cruzi infection. Free Radic Biol Med 163:268–280. https://doi.org/10.1016/j.freeradbiomed.2020.12.009

Batalov AZ, Kuzmanova SI, Penev DP (2000) Ultrasonographic evaluation of knee joint cartilage in rheumatoid arthritis patients. Folia Med 42(4):23–26

Mandl P, Naredo E, Wakefield RJ, Conaghan PG, D’Agostino MA, OMERACT (2011) Ultrasound task force. A systematic literature review analysis of ultrasound joint count and scoring systems to assess synovitis in rheumatoid arthritis according to the OMERACT filter. J Rheumatol 38(9):2055–2062. https://doi.org/10.3899/jrheum.110424

Fleischmann RM, van der Heijde D, Gardiner PV, Szumski A, Marshall L, Bananis E (2017) DAS28-CRP and DAS28-ESR cut-offs for high disease activity in rheumatoid arthritis are not interchangeable. RMD Open 3(1):e000382. https://doi.org/10.1136/rmdopen-2016-000382

Erraoui M (2019) The US7 score is an effective tool of monitoring in patients with rheumatoid arthritis over 6 months of Tocilizumab. Rheumatol Orthop Med. https://doi.org/10.15761/ROM.1000168

McGarry T, Orr C, Wade S et al (2018) JAK/STAT blockade alters synovial bioenergetics, mitochondrial function, and proinflammatory mediators in rheumatoid arthritis. Arthritis Rheumatol 70(12):1959–1970. https://doi.org/10.1002/art.40569

Shi Y, Buffenstein R, Pulliam DA, Van Remmen H (2010) Comparative studies of oxidative stress and mitochondrial function in aging. Integr Comp Biol 50(5):869–879. https://doi.org/10.1093/icb/icq079

Pfleger J, He M, Abdellatif M (2015) Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis 6(7):e1835. https://doi.org/10.1038/cddis.2015.202

Marchetti P, Fovez Q, Germain N, Khamari R, Kluza J (2020) Mitochondrial spare respiratory capacity: mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J 34(10):13106–13124. https://doi.org/10.1096/fj.202000767R