Iterative algorithm for approximating fixed points of multivalued quasinonexpansive mappings in Banach spaces

Ma’aruf Shehu Minjibir1, Chimezie Izuazu1
1African University of Science and Technology, Abuja, Nigeria

Tóm tắt

AbstractLet E be a strictly convex real Banach space and let $D\subseteq E$ D E be a nonempty closed convex subset of E. Let $T_{i}: {D}\longrightarrow \mathcal{P}({D})$ T i : D P ( D ) , $i=1,2,3,\ldots $ i = 1 , 2 , 3 , be a countable family of quasinonexpansive multivalued maps that are continuous with respect to the Hausdorff metric, $\mathcal{P}(D)$ P ( D ) is the family of proximinal and bounded subsets of D. Supposing that the family has at least one common fixed point, we show that a Krasnoselskii–Mann-type sequence converges strongly to a common fixed point. Our result generalizes and complements some important results for single-valued and multivalued quasinonexpansive maps.

Từ khóa


Tài liệu tham khảo

Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image restoration. Inverse Probl. 20, 103–120 (2004)

Diaz, J.B., Metcalf, F.T.: On the structure of the set of subsequential limit points of successive approximations. Bull. Am. Math. Soc. 73, 516–519 (1967)

Dotson, W.G. Jr.: On the Mann iterative process. Trans. Am. Math. Soc. 149, 65–73 (1970)

Edelstein, M., O’brien, R.C.: Nonexpansive mappings, asypmtotic regularity and succesive approximations. J. Lond. Math. Soc. 17(2), 547–554 (1978)

Krasnosel’skii, M.A.: Two observations about the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)

Edelstein, M.: A remark on a theorem of Krasnoselskii. Am. Math. Mon. 13, 507–510 (1966)

Schaefer, H.: Über die Methode sukzessiver Approximationen. Jahresber. Dtsch. Math.-Ver. 59, 131–140 (1957) (German)

Chidume, C.E.: Quasi-nonexpansive mappings and uniform asymptotic regularity. Kobe J. Math. 3(1), 29–35 (1986)

Nadler, S.B. Jr.: Multivalued contraction mappings. Pac. J. Math. 30, 475–488 (1969)

Lim, T.C.: A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space. Bull. Am. Math. Soc. 80, 1123–1126 (1974)

Downing, D., Kirk, W.A.: Fixed point theorems for set-valued mappings in metric and Banach spaces. Math. Jpn. 22(1), 99–112 (1977)

Xu, H.-K.: Multivalued nonexpansive mappings in Banach spaces. Nonlinear Anal. 43, 693–706 (2001)

Abkar, A., Eslamian, M.: Convergence theorems for a finite family of generalized nonexpansive multi-valued mappings in cat(0) spaces. Nonlinear Anal. 75(4), 1895–1903 (2012)

Cardinali, T., Rubbioni, P.: Multivalued fixed point theorems in terms of weak topology and measure of weak noncompactness. J. Math. Anal. Appl. 405(2), 409–415 (2013)

Dinevari, T., Frigon, M.: Fixed point results for multivalued contractions on a metric space with a graph. J. Math. Anal. Appl. 405, 507–517 (2013)

Chidume, C.E., Chidume, C.O., Djitté, N., Minjibir, M.S.: Iterative algorithm for fixed points of multi-valued pseudo-contractive mappings in Banach spaces. J. Nonlinear Convex Anal. 15(2), 257–267 (2014)

Precup, R., Rodríguez-López, J.: Fixed point index theory for decomposable multivalued maps and applications to discontinuous ϕ-Laplacian problems. Nonlinear Anal. 199, 111958 (2020)

Chidume, C.E., Chidume, C.O., Djitté, N., Minjibir, M.S.: Convergence theorems for fixed points of multivalued strictly pseudocontractive mappings in Hilbert spaces. Abstr. Appl. Anal. 2013, Article ID 629468 (2013)

Shazad, N., Zegeye, H.: On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces. Nonlinear Anal. 71, 838–844 (2009)

Chidume, C.E., Minjibir, M.S.: Krasnoselskii algorithm for fixed points of multi-valued quasi-nonexpansive mappings in certain Banach spaces. Fixed Point Theory 17(2), 301–312 (2016)

Uddin, I., Ali, J., Nieto, J.J.: An iteration scheme for a family of multivalued mappings in CAT(0) spaces with an application to image recovery. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112, 373–384 (2018)

Diop, C., Sene, M., Djitté, N.: Iterative algorithms for a finite family of multivalued quasi-nonexpansive mappings. Adv. Numer. Anal. 2014, Article ID 181049 (2014)

Mazur, S.: Über die kleinste konvexe menge, die eine gegebene kompakte menge enthält. Stud. Math. 2, 7–9 (1930)