Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ước lượng tham số lặp cho một lớp hệ thống đa biến dựa trên nguyên tắc nhận dạng phân cấp và tìm kiếm theo gradient
Tóm tắt
Đối với hệ thống tự hồi quy điều khiển đa biến với tiếng ồn hồi quy tự nhiên, mô hình nhận dạng tương ứng của nó bao gồm một ma trận tham số và một véc tơ tham số. Bài báo này trình bày thuật toán lặp dựa trên gradient phân cấp (HGI) để ước lượng tương tác ma trận tham số và véc tơ tham số bằng cách sử dụng nguyên tắc nhận dạng phân cấp và phương pháp tìm kiếm gradient. Kết quả mô phỏng cho thấy thuật toán HGI là hiệu quả.
Từ khóa
#Hệ thống đa biến; Tự hồi quy; Nhận dạng phân cấp; Tìm kiếm gradient; Ước lượng tham sốTài liệu tham khảo
J. Chen, Y. Zhang, R.F. Ding, Auxiliary model based multi-innovation algorithms for multivariable nonlinear systems. Math. Comput. Model. 52(9–10), 1428–1434 (2010)
F. Ding, Several multi-innovation identification methods. Digit. Signal Process. 20(4), 1027–1039 (2010)
F. Ding, Transformations between some special matrices. Comput. Math. Appl. 59(8), 2676–2695 (2010)
F. Ding, T. Chen, Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom. Control 50(8), 1216–1221 (2005)
F. Ding, T. Chen, Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica 41(2), 315–325 (2005)
F. Ding, T. Chen, Hierarchical identification of lifted state-space models for general dual-rate systems. IEEE Trans. Circuits Syst. I, Regul. Pap. 52(6), 1179–1187 (2005)
F. Ding, T. Chen, Hierarchical least squares identification methods for multivariable systems. IEEE Trans. Autom. Control 50(3), 397–402 (2005)
F. Ding, T. Chen, Identification of Hammerstein nonlinear ARMAX systems. Automatica 41(9), 1479–1489 (2005)
F. Ding, T. Chen, Iterative least squares solutions of coupled Sylvester matrix equations. Syst. Control Lett. 54(2), 95–107 (2005)
F. Ding, T. Chen, On iterative solutions of general coupled matrix equations. SIAM J. Control Optim. 44(6), 2269–2284 (2006)
F. Ding, T. Chen, Performance analysis of multi-innovation gradient type identification methods. Automatica 43(1), 1–14 (2007)
F. Ding, P.X. Liu, J. Ding, Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle. Appl. Math. Comput. 197(1), 41–50 (2008)
F. Ding, X.P. Liu, H.Z. Yang, Parameter identification and intersample output estimation for dual-rate systems. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 38(4), 966–975 (2008)
F. Ding, X.P. Liu, G. Liu, Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises. Signal Process. 89(10), 1883–1890 (2009)
F. Ding, L. Qiu, T. Chen, Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems. Automatica 45(2), 324–332 (2009)
J. Ding, L.L. Han, X.M. Chen, Time series AR modeling with missing observations based on the polynomial transformation. Math. Comput. Model. 51(5–6), 527–536 (2010)
J. Ding, Y.J. Liu, F. Ding, Iterative solutions to matrix equations of form AiXBi=Fi. Comput. Math. Appl. 59(11), 3500–3507 (2010)
F. Ding, G. Liu, X.P. Liu, Partially coupled stochastic gradient identification methods for non-uniformly sampled systems. IEEE Trans. Autom. Control 55(8), 1976–1981 (2010)
F. Ding, P.X. Liu, G. Liu, Gradient based and least-squares based iterative identification methods for OE and OEMA systems. Digit. Signal Process. 20(3), 664–677 (2010)
F. Ding, G. Liu, X.P. Liu, Parameter estimation with scarce measurements. Automatica 47(8), 1646–1655 (2011)
F. Ding, X.P. Liu, G. Liu, Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21(2), 215–238 (2011)
F. Ding, Y.J. Liu, B. Bao, Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 226(1), 43–55 (2012)
H.Z. Fang, Y. Shi, J.G. Yi, On stable simultaneous input and state estimation for discrete-time linear systems. Int. J. Adapt. Control Signal Process. 25(8), 671–686 (2011)
S.V. Halunga, N. Vizireanu, Performance evaluation for conventional and MMSE multiuser detection algorithms in imperfect reception conditions. Digit. Signal Process. 20(1), 166–178 (2010)
S.V. Halunga, N. Vizireanu, O. Fratu, Imperfect cross-correlation and amplitude balance effects on conventional multiuser decoder with turbo encoding. Digit. Signal Process. 20(1), 191–200 (2010)
L.L. Han, F. Ding, Identification for multirate multi-input systems using the multi-innovation identification theory. Comput. Math. Appl. 57(9), 1438–1449 (2009)
L.L. Han, F. Ding, Multi-innovation stochastic gradient algorithms for multi-input multi-output systems. Digit. Signal Process. 19(4), 545–554 (2009)
L.L. Han, J. Sheng, F. Ding, Y. Shi, Auxiliary model identification method for multirate multi-input systems based on least squares. Math. Comput. Model. 50(7–8), 1100–1106 (2009)
H.Q. Han, L. Xie, F. Ding, X.G. Liu, Hierarchical least squares based iterative identification for multivariable systems with moving average noises. Math. Comput. Model. 51(9–10), 1213–1220 (2010)
B. Jiang, P. Shi, Z.H. Mao, Sliding mode observer-based fault estimation for nonlinear networked control systems. Circuits Syst. Signal Process. 30(1), 1–16 (2011)
J.H. Li, F. Ding, Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique. Comput. Math. Appl. 62(11), 4170–4177 (2011)
S. Li, L.M. Song, T.S. Qiu, Steady-state and tracking analysis of fractional lower-order constant modulus algorithm. Circuits Syst. Signal Process. 30(6), 1275–1288 (2011)
J.H. Li, F. Ding, G.W. Yang, Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems. Math. Comput. Model. 55(3–4), 442–450 (2012)
Y.J. Liu, Y.S. Xiao, X.L. Zhao, Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model. Appl. Math. Comput. 215(4), 1477–1483 (2009)
Y.J. Liu, J. Sheng, R.F. Ding, Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems. Comput. Math. Appl. 59(8), 2615–2627 (2010)
Y.J. Liu, D.Q. Wang, F. Ding, Least-squares based iterative algorithms for identifying Box–Jenkins models with finite measurement data. Digit. Signal Process. 20(5), 1458–1467 (2010)
Y.J. Liu, L. Yu, F. Ding, Multi-innovation extended stochastic gradient algorithm and its performance analysis. Circuits Syst. Signal Process. 29(4), 649–667 (2010)
Y. Liu, R. Ranganathan, M.T. Hunter, W.B. Mikhael, Complex adaptive LMS algorithm employing the conjugate gradient principle for channel estimation and equalization. Circuits Syst. Signal Process. (2012). doi:10.1007/s00034-011-9368-8
M. Mansouri, H. Snoussi, C. Richard, Channel estimation and multiple target tracking in wireless sensor networks based on quantised proximity sensors. IET Wirel. Sens. Syst. 1(1), 7–14 (2011)
A.A. Nasir, H. Mehrpouyan, S.D. Blostein, S. Durrani, R.A. Kennedy, Timing and carrier synchronization with channel estimation in multi-relay cooperative networks. IEEE Trans. Signal Process. 60(2), 793–811 (2012)
S.S. Ram, V.V. Veeravalli, A. Nedic, Distributed and recursive parameter estimation in parametrized linear state-space models. IEEE Trans. Autom. Control 55(2), 488–492 (2010)
X.Z. Shen, G. Meng, MIMO instantaneous blind identification based on second-order temporal structure and steepest-descent method. Circuits Syst. Signal Process. 30(3), 515–525 (2011)
Y. Shi, F. Ding, T.W. Chen, Multirate crosstalk identification in xDSL systems. IEEE Trans. Commun. 54(10), 1878–1886 (2006)
D.Q. Wang, Least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Appl. 5(14), 1648–1657 (2011)
D.Q. Wang, F. Ding, Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems. Digit. Signal Process. 20(3), 750–762 (2010)
D.Q. Wang, F. Ding, Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Process. 91(5), 1182–1189 (2011)
L.Y. Wang, L. Xie, X.F. Wang, The residual based interactive stochastic gradient algorithms for controlled moving average models. Appl. Math. Comput. 211(2), 442–449 (2009)
D.Q. Wang, G.W. Yang, R.F. Ding, Gradient-based iterative parameter estimation for Box-Jenkins systems. Comput. Math. Appl. 60(5), 1200–1208 (2010)
W. Wang, F. Ding, J.Y. Dai, Maximum likelihood least squares identification for systems with autoregressive moving average noise. Appl. Math. Model. 36(5), 1842–1853 (2012)
Y.S. Xiao, Y. Zhang, J. Ding, J.Y. Dai, The residual based interactive least squares algorithms and simulation studies. Comput. Math. Appl. 58(6), 1190–1197 (2009)
L. Xie, J. Ding, F. Ding, Gradient based iterative solutions for general linear matrix equations. Comput. Math. Appl. 58(7), 1441–1448 (2009)
L. Xie, Y.J. Liu, H.Z. Yang, Gradient based and least squares based iterative algorithms for matrix equations AXB+CXTD=F. Appl. Math. Comput. 217(5), 2191–2199 (2010)
L. Xie, H.Z. Yang, F. Ding, Modeling and identification for non-uniformly periodically sampled-data systems. IET Control Theory Appl. 4(5), 784–794 (2010)
J.I. Yuz, J. Alfaro, J.C. Agüero, G.C. Goodwin, Identification of continuous-time state-space models from non-uniform fast-sampled data. IET Control Theory Appl. 5(7), 842–855 (2011)
J.B. Zhang, F. Ding, Y. Shi, Self-tuning control based on multi-innovation stochastic gradient parameter estimation. Syst. Control Lett. 58(1), 69–75 (2009)
Z.N. Zhang, F. Ding, X.G. Liu, Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems. Comput. Math. Appl. 61(3), 672–682 (2011)