Iterative Bayesian denoising based on variance stabilization using Contourlet Transform with Sharp Frequency Localization: application to EFTEM images
Tóm tắt
Từ khóa
Tài liệu tham khảo
Messaoudi C, Aschman N, Cunha M, Oikawa T, Sorzano CO, Marco S. Three-dimensional chemical mapping by eftem-tomoj including improvement of snr by pca and art reconstruction of volume by noise suppression. Microsc Microanal. 2013; 19(6):1669–77.
Cunha ALD, Zhou J, Do MN. The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process. 2006; 15(10):3089–101.
Sid-Ahmed S, Messali Z, Ouahabi A, Trépout S, Messaoudi C, Marco S. Bilateral filtering and wavelets based image denoising: Application to electron microscopy images with low electron dose. Int J Recent Trends Eng Technol. 2014; 11(1):153–64.
Zuo JM. Electron detection characteristics of a slow-scan ccd camera, imaging plates and film, and electron image restoration. Microsc Res Tech. 2000; 49(3):245–68.
Vulović M, Ravelli RB, van Vliet LJ, Koster AJ, Lazić LI, Lücken U, Rullgård H, Öktem O, Rieger B. Image formation modeling in cryo-electron microscopy. J Struct Biol. 2013; 183(1):19–32.
Lu Y, Do MN. A new contourlet transform with sharp frequency localization. In: Proceedings of the 2006 IEEE International Conference on Image Processing (ICIP). Atlanta: IEEE: 2006. p. 1629–32. https://doi.org/10.1109/ICIP.2006.312657 .
Azzari L, Foi A. Variance stabilization for noisy+estimate combination in iterative poisson denoising. IEEE Signal Process Lett. 2016; 23(8):1086–90.
Boubchir L, Al-Maadeed S, Bouridane A. Undecimated wavelet-based bayesian denoising in mixed poisson-gaussian noise with application on medical and biological images. In: The 4th International Conference on Image Processing Theory, Tools and Applications (IPTA). Paris: IEEE: 2014. p. 1–5. https://doi.org/10.1109/IPTA.2014.7001926 .
Sid-Ahmed S, Messali Z, Ouahabi A, Trepout S, Messaoudi C, Sergio M. Nonparametric denoising methods based on contourlet transform with sharp frequency localization: Application to low exposure time electron microscopy images. Entropy. 2015; 17(5):3461–78.
Boubchir L, Fadili J. A closed-form nonparametric bayesian estimator in the wavelet domain of images using an approximate α-stable prior. Pattern Recogn Lett. 2006; 27(12):1370–82.
Boubchir L, Fadili J, Bloyet D. Bayesian denoising in the wavelet-domain using an analytical approximate α-stable prior. In: The 17th International Conference on Pattern Recognition (ICPR). Cambridge: IEEE: 2004. p. 889–92. https://doi.org/10.1109/ICPR.2004.1333915 .
Boudjelal A, Messali Z, Boubchir L, Chetih N. Nonparametric bayesian estimation structures in the wavelet domain of multiple noisy image copies. In: The 6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). Sousse: IEEE: 2012. p. 495–501. https://doi.org/10.1109/SETIT.2012.6481962 .
Sid-Ahmed S, Messali Z, Ouahabi A, Trepout S, Messaoudi C, Marco S, Mohammad-Djafari A, Barbaresco F. Non parametric denoising methods based on wavelets: Application to electron microscopy images in low exposure time. In: AIP Conference Proceedings. AIP: 2015. p. 403–13.
Do MN, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process. 2005; 14(12):2091–106.
Laurent G. Ecrans Plats et Vidéoprojecteurs - 2 Éd: Principes, Fonctionnement et Maintenance. In: Audio-Photo-Vidéo. Dunod: 2014. https://www.dunod.com/sciences-techniques/ecrans-plats-et-videoprojecteurs-principes-fonctionnement-et-maintenance?gclid=Cj0KCQjww47nBRDlARIsAEJ34blH9GIZX0mTHyMw3penlvJzlTz3HJk9YWu_ZtfTojrlEsVGxip7NDkaAnlMEALw_wcB .
Ahmed SS, Messali Z, Poyer F, Roui LL-L, Desjardins L, Cassoux N, Thomas CD, Marco S, Lemaitre S. Iterative variance stabilizing transformation denoising of spectral domain optical coherence tomography images. Applied to Retinoblastma. Ophthalmic Res. 2018; 59(3):164–9.
Fadili J, Boubchir L. Analytical form for a bayesian wavelet estimator of images using the bessel k form densities. IEEE Trans Image Process. 2005; 14(2):231–40.
Boubchir L, Fadili J. Bayesian denoising based on the map estimation in wavelet-domain using bessel k form prior. In: International Conference on Image Processing (ICIP). Genova: IEEE: 2005. p. 113. https://doi.org/10.1109/ICIP.2005.1529700 .
Boubchir L, Nait-Ali A, Petit E. Multivariate statistical modeling of images in sparse multiscale transforms domain. In: The 17th IEEE International Conference on Image Processing (ICIP). Hong Kong: IEEE: 2010. p. 1877–80. https://doi.org/10.1109/ICIP.2010.5652329 .
Boubchir L, Boashash B. Wavelet denoising based on the map estimation using the bkf prior with application to images and eeg signals. IEEE Trans Signal Process. 2013; 61(8):1880–94.
Fadili J, Starck J-L, Boubchir L. Morphological diversity and sparse image denoising. IEEE Int Conf Acoust Speech Signal Process(ICASSP). 2007; I:589–92.
H Sadreazami MOA, Swamy MNS. Contourlet domain image modeling by using the alpha-stable family of distributions. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS). Melbourne VIC: IEEE: 2014. https://doi.org/10.1109/ISCAS.2014.6865378 .