Iteration formulae for brake orbit and index inequalities for real pseudoholomorphic curves
Tóm tắt
I give precise iteration formulae for brake orbits in dimension 3 and use these formulae to get some index inequalities for moduli spaces of real pseudoholomorphic curves, which are important to establish real embedded contact homology and real cylindrical contact homology in dimension 3.
Tài liệu tham khảo
Hutchings, M.: An index inequality for embedded pseudoholomorphic curves in symplectizations. J. Eur. Math. Soc. 4, 313–361 (2002)
Hutchings, M., Taubes, C.: Gluing pseudoholomorphic curves along branched covered cylinders I. J. Symplect. Geom. 5, 43–137 (2007)
Hutchings, M., Taubes, C.: Gluing pseudoholomorphic curves along branched covered cylinders II. J. Symplect. Geom. 7, 29–133 (2009)
Hutchings, M.: Lecture Notes on Embedded Contact Homology. In: Contact and Symplectic Topology, 389–484. Springer, Cham (2014)
Hutchings, M., Nelson, J.: Cylindrical contact homology for dynamically convex contact forms in three dimensions. J. Symplect. Geom. 14, 983–1012 (2016)
Taubes, C.: Embedded contact homology and Seiberg-Witten Floer cohomology I. Geom. Topol. 14, 2497–2581 (2010)
Taubes, C.: Embedded contact homology and Seiberg–Witten Floer cohomology II. Geom. Topol. 14, 2583–2720 (2010)
Taubes, C.: Embedded contact homology and Seiberg-Witten Floer cohomology III. Geom. Topol. 14, 2721–2817 (2010)
Taubes, C.: Embedded contact homology and Seiberg-Witten Floer cohomology IV. Geom. Topol. 14, 2819–2960 (2010)
Taubes, C.: Embedded contact homology and Seiberg-Witten Floer cohomology V. Geom. Topol. 14, 2961–3000 (2010)
Taubes, C.: Seiberg Witten and Gromov Invariants for Symplectic 4-Manifolds. International Press, Somerville, MA (2000)
Welschinger, J.: Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry. Invent. Math. 162, 195–234 (2005)
Tian, G., Wang, S.: Orientability and real Seiberg-Witten Invariants. Int. J. Math. 20, 573–604 (2009)
Frauenfelder, U., Kang, J.: Real holomorphic curves and invariant global surfaces of section. Proc. Lond. Math. Soc. 112, 477–511 (2016)
Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32, 827–844 (1993)
Long, Y., Zhang, D., Zhu, C.: Multiple brake orbits in bounded convex symmetric domains. Adv. Math. 203, 568–635 (2006)
Zhou, B., Zhu, C.: Fredholm Theory for Pseudoholomorphic Curves with Brake Symmetry, in preparation
Schwarz, M.: Cohomology Operation from \({S}^1\)-Cobordisms in Floer Homology, Ph.D. thesis, ETH-Zürich (1995)
Dragnev, D.: Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations. Commun. Pure Appl. Math. 57, 726–763 (2004)
Liu, C., Zhang, D.: Iteration theory of L-index and multiplicity of brake orbits. J. Differ. Equ. 245(4), 1194–1245 (2014)
McDuff, D., Salamon, D.: J-holomorphic Curves and Symplectic Topology, Second edition. American Mathematical Society Colloquium Publications, 52. American Mathematical Society, Providence, RI (2012)
Farkas, H., Kra, I.: Riemann Surface. Springer, New York, NY (1992)
Long, Y.: Index Theory for Symplectic Paths with Applications. Birkhäuser, Basel (2002)
Hofer, H., Wysocki, K., Zehnder, E.: Properties of pseudoholomorphic curves in symplectisations. I : asymptotics. Annales de l’I.H.P. Analyse non linéaire 13, 337–379 (1996)
Hofer, H., Wysocki, K., Zehnder, E.: Properties of pseudoholomorphic curves in symplectisations II: embedding controls and algebraic invariants. Geometr. Funct. Anal. 5(2), 270–328 (1995)
Wendl, C.: Lectures on Symplectic Field Theory. arXiv:1612.01009
Bourgeois, F., Eliashberg, Y., Hofer, H., Wysocki, K., Zehnder, E.: Compactness results in symplectic field theory. Geometr. Topol. 7, 799–888 (2003)
Frauenfelder, U., Koert, O.V.: The restricted three body problem and holomorphic curves. Birkhäuser, Cham (2018)
Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Springer, Berlin (1994)