Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system
Tóm tắt
Từ khóa
Tài liệu tham khảo
Catbas FN, Kijewski-Correa T (2013) Structural identification of constructed systems: collective effort toward an integrated approach that reduces barriers to adoption. J Struct Eng 139(10):1648–1652
Au S-K (2012) Fast bayesian ambient modal identification in the frequency domain, part ii: posterior uncertainty. Mech Syst Signal Process 26:76–90
Du H, Zhang N, Samali B, Naghdy F (2012) Robust sampled-data control of structures subject to parameter uncertainties and actuator saturation. Eng Struct 36:39–48
Mao Z, Todd M (2013) Statistical modeling of frequency response function estimation for uncertainty quantification. Mech Syst Signal Process 38(2):333–345
Goulet JA, Smith IF (2012) Predicting the usefulness of monitoring for identifying the behavior of structures. J Struct Eng 139(10):1716–1727
Au S-K (2014) Uncertainty law in ambient modal identificationpart i: theory. Mech Syst Signal Process 48(1):15–33
Serhat Erdogan Y, Necati Catbas F, Gundes Bakir P (2014) Structural identification (st-id) using finite element models for optimum sensor configuration and uncertainty quantification. Finite Elem Anal Des 81:1–13
Zhang Y, Yang W (2013) Bayesian strain modal analysis under ambient vibration and damage identification using distributed fiber bragg grating sensors. Sens Actuators A Phys 201:434–449
Ching J, Beck J (2004) Bayesian analysis of the phase ii iasc-asce structural health monitoring experimental benchmark data. J Eng Mech 130(10):1233–1244
Chen T, Morris J, Martin E (2005) Particle filters for state and parameter estimation in batch processes. J Process Control 15(6):665–673
Rabiei M, Modarres M (2013) A recursive bayesian framework for structural health management using online monitoring and periodic inspections. Reliabil Eng Syst Saf 112:154–164
Rabiei M, Modarres M (2013) Quantitative methods for structural health management using in situ acoustic emission monitoring. Int J Fatigue 49:81–89
Flynn EB, Todd MD (2010) A bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing. Mech Syst Signal Process 24(4):891–903
Zhu B, Frangopol DM (2013) Reliability assessment of ship structures using bayesian updating. Eng Struct 56:1836–1847
Beck JL, Yuen K-V (2004) Model selection using response measurements: Bayesian probabilistic approach. J Eng Mech 130(2):192–203
Lam HF, Ng CT (2008) The selection of pattern features for structural damage detection using an extended bayesian ann algorithm. Eng Struct 30(10):2762–2770
Kalman RE (1960) A new approach to linear filtering and prediction problem. Trans ASME Ser D J Basic Eng 82:34–45
Simon D (2006) Optimal state estimation: Kalman, $$H_{\infty }$$ H ∞ , and nonlinear approaches. Wiley, New York
Matthies L, Kanade T, Szeliski R (1989) Kalman filter-based algorithms for estimating depth from image sequences. Int J Comput Vis 3(3):209–238
Julier S, Uhlmann J (1997) New extension of the kalman filter to nonlinear systems. Proc SPIE 3(1):182–193
Ljung L (1979) Asymptotic behavior of the extended kalman filter as a parameter estimator for linear systems. IEEE Trans Autom Control 24(1):36–50
Kim Y, Sul S, Park M (1994) Speed sensorless vector control of induction motor using extended kalman filter. IEEE Trans Ind Appl 30(5):1225–1233
Mansouri M, Nounou H, Nounou M, Datta AA (2012) Modeling of nonlinear biological phenomena modeled by s-systems using bayesian method. In: Biomedical Engineering and Sciences (IECBES), 2012 IEEE EMBS Conference on. IEEE, 2012, pp 305–310
Romanenko A, Castro JA (2004) The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study. Comput Chem Eng 28(3):347–355
Gustafsson F, Hendeby G (2012) Some relations between extended and unscented Kalman filters. IEEE Trans Signal Process 60(2):545–555
Wan EA, Van Der Merwe R (2000) The unscented kalman filter for nonlinear estimation. In: Adaptive systems for signal processing, communications, and control symposium, (2000) AS-SPCC. The IEEE 2000. IEEE 2000, pp 153–158
Zhu J, Zheng N, Yuan Z, Zhang Q, Zhang X, He Y (2009) A slam algorithm based on the central difference kalman filter. In: Intelligent Vehicles Symposium, 2009 IEEE. IEEE, 2009, pp 123–128
Van Der Merwe R, Wan EA (2001) The square-root unscented kalman filter for state and parameter-estimation. In: Acoustics, speech, and signal processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE international conference on, vol 6. IEEE, 2001, pp 3461–3464
Wu P, Li X, Bo Y (2013) Iterated square root unscented kalman filter for maneuvering target tracking using tdoa measurements. Int J Control Autom Syst 11(4):761–767
Zhan R, Wan J (2007) Iterated unscented kalman filter for passive target tracking. IEEE Trans Aerosp Electron Syst 43(3):1155–1163
Van Der Merwe R (2004) Sigma-point kalman filters for probabilistic inference in dynamic state-space models. Ph.D. dissertation, Oregon Health and Science University