Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context
Tóm tắt
Từ khóa
Tài liệu tham khảo
H. Durrant-Whyte, T. Bailey. Simultaneous localization and mapping: Part I. IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99–110, 2006. DOI: 10.1109/ MRA.2006.1638022.
T. Bailey, H. Durrant-Whyte. Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108–117, 2006. DOI: 10.1109/MR.2006.1678144.
T. S. Ho, Y. C. Fai, E. S. L. Ming. Simultaneous localization and mapping survey based on filtering techniques. In Proceedings of the 10th Asian Control Conference, IEEE, Kota Kinabalu, Malaysia, pp. 1–6, 2015.
X. C. Zhang, B. Li, S. L. Joseph, J. Z. Xiao, Y. Sun, Y. L. Tian, J. P. Muñoz, C. C. Yi. A SLAM based semantic indoor navigation system for visually impaired users. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, IEEE, Hong Kong, China, pp. 1458–1463, 2015.
C. Arth, C. Pirchheim, J. Ventura, D. Schmalstieg, V. Lepetit. Instant outdoor localization and SLAM initialization from 2.5D maps. IEEE Transactions on Visualization and Computer Graphics, vol. 21, no. 11, pp. 1309–1318, 2015. DOI: 10.1109/TVCG.2015.2459772.
J. Kim. Aerial inertial-slam: Progresses and future challenges. In Proceedings of the 12th International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE, Goyang, South Korea, pp. 212–213, 2015.
[7]L. Paull, S. Saeedi, M. Seto, H. Li. AUV navigation and localization: A review. IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131–149, 2014. DOI: 10.1109/JOE. 2013.2278891.
F. Hidalgo, T. Bräunl. Review of underwater SLAM techniques. In Proceedings of the 6th International Conference on Automation, Robotics and Applications, IEEE, Queenstown, New Zealand, pp. 306–311, 2015.
C. L. Wang, T. M. Wang, J. H. Liang, Y. C. Zhang, Y. Zhou. Bearing-only visual SLAM for small unmanned aerial vehicles in GPS-denied environments. International Journal of Automation and Computing, vol. 10, no. 5, pp. 387–396, 2013. DOI: 10.1007/s11633-013-0735-8.
D. Y. Bi, Y. L. Yu, Y. Shen, C. Melchiorri. Implementation of trapped personnel detection and evacuation guidance in indoor fire scene based on quadrotor UAV. In Proceedings of International Conference on Intelligent Control and Computer Application, Zhengzhou, China, pp. 57–62, 2016.
S. Thrun, W. Burgard, D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents), Cambridge, Mass, UK: The MIT Press, 2005.
C. De la Cruz, T. Freire Bastos, F. A. Auat Cheein, R. Carelli. SLAM-based robotic wheelchair navigation system designed for confined spaces. In Proceedings of IEEE International Symposium on Industrial Electronics, IEEE, Taipei, China, pp. 2331–2336, 2010.
F. Auat Cheein, G. Steiner, G. P. Paina, R. Carelli. Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection. Computers and Electronics in Agriculture, vol. 78, no. 2, pp. 195–207, 2011. DOI: 10.1016/j.compag.2011.07.007.
Y. Lee, J. Choi, H. T. Choi. Experimental results of real-time sonar-based underwater localization using landmarks. In Proceedings of MTS/IEEE Washington OCEANS’15, IEEE, Washington DC, USA, 2015.
M. R. Nepali, N. Yadav, U. Dev, S. Mishra, S. L. Shrestha. A strategic methodology for 2D map building in an Indoor environment. In Proceedings of the 1st International Conference on Next Generation Computing Technologies, IEEE, Washington DC, USA, pp. 797–803, 2015.
J. Fuentes-Pacheco, J. Ruiz-Ascencio, J. M. Rendón-Mancha. Visual simultaneous localization and mapping: A survey. Artificial Intelligence Review, vol. 43, no. 1, pp. 55–81, 2015. DOI: 10.1007/s10462-012-9365-8.
S. C. Zhou, R. Yan, J. X. Li, Y. K. Chen, H. J. Tang. A brain-inspired SLAM system based on ORB features. International Journal of Automation and Computing, vol. 14, no. 5, pp. 564–575, 2017. DOI: 10.1007/s11633-017-1090-y.
L. T. Hsu, Y. Wada, Y. L. Gu, S. Kamijo. Rectification of 3D building models based on GPS signal collected by vehicle. In Proceedings of IEEE International Conference on Vehicular Electronics and Safety, IEEE, Yokohama, Japan, pp. 132–139, 2015.
C. S. Jiang, D. P. Paudel, Y. Fougerolle, D. Fofi, C. Demonceaux. Static-map and dynamic object reconstruction in outdoor scenes using 3-D motion segmentation. IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 324–331, 2016. DOI: 10.1109/LRA.2016.2517207.
G. Bresson, R. Aufrére, R. Chapuis. A general consistent decentralized simultaneous localization and mapping solution. Robotics and Autonomous Systems, vol. 74, pp. 128–147, 2015. DOI: 10.1016/j.robot.2015.07.008.
S. Saeedi, M. Trentini, M. Seto, H. Li. Multiple-robot simultaneous localization and mapping: A review. Journal of Field Robotics, vol. 33, no. 1, pp. 3–46, 2016. DOI: 10.1002/rob.21620.
S. Dominguez, B. Khomutenko, G. Garcia, P. Martinet. An optimization technique for positioning multiple maps for self-driving car’s autonomous navigation. In Proceedings of the 18th International Conference on Intelligent Transportation Systems, IEEE, Las Palmas, Spain, pp. 2694–2699, 2015.
G. P. Huang, A. I. Mourikis, S. I. Roumeliotis. A quadratic-complexity observability-constrained unscented Kalman filter for SLAM. IEEE Transactions on Robotics, vol. 29, no. 5, pp. 1226–1243, 2013. DOI: 10.1109/TRO. 2013.2267991.
J. A. Hesch, D. G. Kottas, S. L. Bowman, S. I. Roumeliotis. Consistency analysis and improvement of vision-aided inertial navigation. IEEE Transactions on Robotics, vol. 30, no. 1, pp. 158–176, 2014. DOI: 10.1109/TRO.2013. 2277549.
I. J. Cox. A review of statistical data association techniques for motion correspondence. International Journal of Computer Vision, vol. 10, no. 1, pp. 53–66, 1993. DOI: 10.1007/BF01440847.
M. Adams, B. N. Vo, R. Mahler, J. Mullane. SLAM gets a PHD: New concepts in map estimation. IEEE Robotics & Automation Magazine, vol. 21, no. 2, pp. 26–37, 2014.
R. Smith, M. Self, P. Cheeseman. A stochastic map for uncertain spatial relationships. In Proceedings of the 4th International Symposium on Robotics Research, Santa Clara, USA, pp. 467–474, 1987.
P. Moutarlier, R. Chatila. Stochastic multisensory data fusion for mobile robot location and environment modeling. In Proceedings of the 5th International Symposium on Robotics Research, Tokyo, Japan, pp. 85–94, 1989.
M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit. Fast-SLAM: A factored solution to the simultaneous localization and mapping problem. In Proceedings of AAAI National Conference on Artificial Intelligence, Menlo Park, USA, pp. 593–598, 2002.
T. Z. Lv, C. X. Zhao, H. F. Zhang. An improved Fast-SLAM algorithm based on revised genetic resampling and SR-UPF. International Journal of Automation and Computing, Online First. DOI: 10.1007/s11633-016-1050-y.
M. A. Paskin. Thin junction tree filters for simultaneous localization and mapping. In Proceedings of the 18th International Joint Conference on Artificial Intelligence, San Francisco, USA, pp. 1157–1164, 2003.
F. Dellaert, M. Kaess. Square root SAM: Simultaneous localization and mapping via square root information smoothing. International Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203, 2006. DOI: 10.1177/ 0278364906072768.
M. Jadaliha, J. Choi. Fully Bayesian simultaneous localization and spatial prediction using Gaussian Markov random fields (GMRFs). In Proceedings of the American Control Conference, IEEE, Washington DC, USA, pp. 4592–4597, 2013.
[35]Z. L. Xiao, H. K. Wen, A. Markham, N. Trigoni. Indoor tracking using undirected graphical models. IEEE Transactions on Mobile Computing, vol. 14, no. 11, pp. 2286–2301, 2015. DOI: 10.1109/TMC.2015.2398431.
J. Nocedal, S. J. Wright, Numerical Optimization, Berlin, Germany: Springer Verlag, 2006.
D. M. Rosen, C. DuHadway, J. J. Leonard. A convex relaxation for approximate global optimization in simultaneous localization and mapping. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Seattle, USA, pp. 5822–5829, 2015.
R. A. Brooks. Elephants don’t play chess. Robotics and Autonomous Systems, vol. 6, no. 1–2, pp. 3–15, 1990. DOI: 10.1016/S0921-8890(05)80025-9.
R. G. Cowell, P. A. Dawid, S. L. Lauritzen, D. J. Spiegelhalter. Probabilistic Networks and Expert Systems, New York, USA: Springer, 1999.
J. Folkesson, H. Christensen. Graphical SLAM-a self-correcting map. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, New Orleans, USA, vol. 1, pp. 383–389, 2004.
J. Sola. Course on SLAM, Technical Report, Robotics Institute and Industrial Computing, Polytechnic University of Catalonia, Barcelona, Spain, 2016.
S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, A. Y. Ng. Simultaneous Mapping and Localization with Sparse Extended Information Filters: Theory and Initial Results, Technical Report CMU-CS-02-112, Carnegie Mellon University, Pittsburgh, USA, 2002.
G. Dissanayake, S. B. Williams, H. Durrant-Whyte, T. Bailey. Map management for efficient simultaneous localization and mapping (SLAM). Autonomous Robots, vol. 12, no. 3, pp. 267–286, 2002. DOI: 10.1023/A: 1015217631658.
Y. Latif, C. Cadena, J. Neira. Robust graph SLAM back-ends: A comparative analysis. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Chicago, USA, pp. 2683–2690, 2014.
N. Carlevaris-Bianco, M. Kaess, R. M. Eustice. Generic node removal for factor-graph SLAM. IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1371–1385, 2014. DOI: 10.1109/TRO.2014.2347571.
B. Suger, G. D. Tipaldi, L. Spinello, W. Burgard. An approach to solving large-scale slam problems with a small memory footprint. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Hong Kong, China, pp. 3632–3637, 2014.
M. Mazuran, G. D. Tipaldi, L. Spinello, W. Burgard. Nonlinear graph sparsification for SLAM. In Proceedings of Robotics: Science and Systems, Daejeon Convention Center, Berkeley, USA, 2014.
S. Choudhary, V. Indelman, H. I. Christensen, F. Dellaert. Information-based reduced landmark SLAM. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Seattle, USA, pp. 4620–4627, 2015.
R. Kindermann, J. L. Snell. Markov Random Fields and Their Applications, Providence, USA: American Mathematical Society, 1980.
S. Z. Li. Markov Random Field Modeling in Image Analysis, 3rd ed., London, UK: Springer, 2009.
J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B, vol. 48, no. 3, pp. 259–302, 1986.
J. M. Hammersley, P. Clifford. Markov fields on finite graphs and lattices, Technical Report, University of California, Berkeley, USA, 1971.
S. Geman, D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721–741, 1984.
A. Gelman, C. Robert, N. Chopin, J. Rousseau. Bayesian Data Analysis, London, UK: Chapman & Hall, 1995.
S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi. Optimization by simulated annealing. Science, vol. 220, no. 4598, pp. 671–680, 1983. DOI: 10.1126/science.220.4598.671.