Isovolumetric adaptations to space-filling design of experiments

Koushyar Komeilizadeh1, Arne Kaps1, Fabian Duddeck1
1TUM School of Engineering and Design, Technical University of Munich, Arcisstr. 21, 80333, Munich, Germany

Tóm tắt

AbstractA brief review of methods in design of experiments and criteria to determine space-filling properties of a set of samples is given. Subsequently, the so-called curse of dimensionality in sampling is reviewed and used as motivation for the proposal of an adaptation to the strata creation process in Latin hypercube sampling based on the idea of nested same-sized hypervolumes. The proposed approach places samples closer to design space boundaries, where in higher dimensions the majority of the design space volume is located. The same idea is introduced for Monte Carlo considering an affordable number of samples as an a-posteriori transformation. Both ideas are studied on different algorithms and compared using different distance-based space-filling criteria. The proposed new sampling approach then enables more efficient sampling for optimization especially for high-dimensional problems, i.e. for problems with a high number of design variables.

Từ khóa


Tài liệu tham khảo

Abdar M, Pourpanah F, Hussain S et al (2021) A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf Fus. https://doi.org/10.1016/j.inffus.2021.05.008

Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behavior of distance metrics in high dimensional space. In: International conference on database theory, Springer, Uppsala, Sweden, pp 420–434

Alizadeh R, Allen J, Mistree F (2020) Managing computational complexity using surrogate models: a critical review. Res Eng Design 31:275–298. https://doi.org/10.1007/s00163-020-00336-7

Antinori G (2017) Uncertainty analysis and robust optimization for low pressure turbine rotors. PhD thesis, Technische Universität München, Munich, Germany, http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20160804-1279009-0-6

Audze P, Eglais V (1977) New approach to the design of experiments. Probl Dyn Strength 35:104–107

Beachkofski B, Grandhi R (2002) Improved distributed hypercube sampling. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and materials conference, p 1274

Bhattacharyya B (2018) A critical appraisal of design of experiments for uncertainty quantification. Arch Computat Methods Eng 25(5):727–751. https://doi.org/10.1007/s11831-017-9211-x

Bouhlel MA, Hwang JT, Bartoli N et al (2019) A python surrogate modeling framework with derivatives. Adv Eng Soft. https://doi.org/10.1016/j.advengsoft.2019.03.005

Bratley P, Fox B (1988) Algorithm 659: implementing Sobol’s quasi-random sequence generator. ACM Trans Math Softw 14(1):88–100. https://doi.org/10.1145/42288.214372

Chen VC, Tsui KL, Barton RR et al (2006) A review on design, modeling and applications of computer experiments. IIE Trans 38(4):273–291. https://doi.org/10.1080/07408170500232495

Cioppa TM, Lucas TW (2007) Efficient nearly orthogonal and space-filling Latin hypercubes. Technometrics 49(1):45–55. https://doi.org/10.1198/004017006000000453

Crombecq K, Laermans E, Dhaene T (2011) Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling. Eur J Oper Res 214(3):683–696. https://doi.org/10.1016/j.ejor.2011.05.032

Damblin G, Couplet M, Iooss B (2013) Numerical studies of space-filling designs: optimization of Latin hypercube samples and subprojection properties. J Simul 7(4):276–289. https://doi.org/10.1057/jos.2013.16

De Rainville FM, Gagné C, Teytaud O et al (2012) Evolutionary optimization of low-discrepancy sequences. ACM Trans Model Comput Simul. doi 10(1145/2133390):2133393

Dussert C, Rasigni G, Rasigni M et al (1986) Minimal spanning tree: a new approach for studying order and disorder. Phys Rev B 34:3528–3531. https://doi.org/10.1103/PhysRevB.34.3528

Fang J, Sun G, Qiu N et al (2017) On design optimization for structural crashworthiness and its state of the art. Struct Multidisc Optim 55:1091–1119

Frank CP, Marlier RA, Pinon-Fischer OJ et al (2018) Evolutionary multi-objective multi-architecture design space exploration methodology. Optim Eng 19(2):359–381. https://doi.org/10.1007/s11081-018-9373-x

Garud SS, Karimi IA, Kraft M (2017) Design of computer experiments: a review. Comput Chem Eng 106:71–95. https://doi.org/10.1016/j.compchemeng.2017.05.010

Glasserman P (2013) Monte Carlo methods in financial engineering, vol 53. Springer Science & Business Media, chap Quasi-Monte Carlo. https://doi.org/10.1007/978-0-387-21617-1

Gnewuch M, Srivastav A, Winzen C (2009) Finding optimal volume subintervals with k points and calculating the star discrepancy are np-hard problems. J Complex 25(2):115–127. https://doi.org/10.1016/j.jco.2008.10.001

Harase S (2019) Comparison of Sobol’ sequences in financial applications. Monte Carlo Methods Appl 25(1):61–74. https://doi.org/10.1515/mcma-2019-2029

Hebbal A, Brevault L, Balesdent M et al (2021) Bayesian optimization using deep Gaussian processes with applications to aerospace system design. Optim Eng 22(1):321–361. https://doi.org/10.1007/s11081-020-09517-8

Hickernell F (1998) A generalized discrepancy and quadrature error bound. Math comput 67(221):299–322. https://doi.org/10.1090/S0025-5718-98-00894-1

Hou T, Nuyens D, Roels S et al (2019) Quasi-Monte Carlo based uncertainty analysis: sampling efficiency and error estimation in engineering applications. Reliab Eng Syst Safety 191(106):549. https://doi.org/10.1016/j.ress.2019.106549

Husslage BG, Rennen G, Van Dam ER et al (2011) Space-filling Latin hypercube designs for computer experiments. Optim Eng 12(4):611–630. https://doi.org/10.1007/s11081-010-9129-8

Jin R, Chen W, Sudjianto A (2005) An efficient algorithm for constructing optimal design of computer experiments. J Stat Plan Inference 134(1):268–287. https://doi.org/10.1016/j.jspi.2004.02.014

Joe S, Kuo FY (2003) Remark on algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans Math Softw 29(1):49–57. https://doi.org/10.1145/641876.641879

Joe S, Kuo FY (2008) Constructing Sobol sequences with better two-dimensional projections. SIAM J Sci Comput 30(5):2635–2654. https://doi.org/10.1137/070709359

Johnson ME, Moore LM, Ylvisaker D (1990) Minimax and maximin distance designs. J Sat Plan Inference 26(2):131–148. https://doi.org/10.1016/0378-3758(90)90122-B

Kucherenko S, Albrecht D, Saltelli A (2015) Exploring multi-dimensional spaces: a comparison of Latin hypercube and quasi Monte Carlo sampling techniques. preprint, arXiv:1505.02350

Lange VA, Fender J, Duddeck F (2018) Relaxing high-dimensional constraints in the direct solution space method for early phase development. Optim Eng 19(4):887–915. https://doi.org/10.1007/s11081-018-9381-x

L’Ecuyer P, Lemieux C (2002) Recent advances in randomized Quasi-Monte Carlo methods. Springer US, New York, pp 419–474. https://doi.org/10.1007/0-306-48102-2_20

Li W, Lu L, Xie X et al (2017) A novel extension algorithm for optimized Latin hypercube sampling. J Stat Comput Simul 87(13):2549–2559. https://doi.org/10.1080/00949655.2017.1340475

Liu L (2005) Could enough samples be more important than better designs for computer experiments? In: 38th Annual simulation symposium, IEEE, pp 107–115

Manteufel R (2001) Distributed hypercube sampling algorithm. In: 19th AIAA applied aerodynamics conference, p 1673

McKay M, Beckman R, Conover W (1979) Acomparisonof three methodsforselecting valuesofinputvariablesinthe analysisofoutputfrom acomputercode. Technometrics 21(2):239–245

Montgomery DC (2009) Design and analysis of experiments, 7th edn. Wiley, Hoboken

Morris MD, Mitchell TJ (1995) Exploratory designs for computational experiments. J Stat Plan Inference 43(3):381–402. https://doi.org/10.1016/0378-3758(94)00035-T

Niederreiter H (1992) Random number generation and quasi-Monte Carlo methods. SIAM, New Delhi. https://doi.org/10.1137/1.9781611970081

Pronzato L (2017) Minimax and maximin space-filling designs: some properties and methods for construction. J de la Société Française de Stat 158(1):7–36

Rajabi MM, Ataie-Ashtiani B, Janssen H (2015) Efficiency enhancement of optimized Latin hypercube sampling strategies: application to Monte Carlo uncertainty analysis and meta-modeling. Adv Water Resour 76:127–139. https://doi.org/10.1016/j.advwatres.2014.12.008

Verleysen M (2003) Learning high-dimensional data. Nato Sci Series Sub Series III Comput Syst Sci 186:141–162

Viana FAC (2013) Things you wanted to know about the Latin hypercube design and were afraid to ask. In: 10th World congress on structural and multidisciplinary optimization, Orlando, FL, USA

Viana FAC (2016) A tutorial on Latin hypercube design of experiments. Quality and Reliab Eng Int 32(5):1975–1985. https://doi.org/10.1002/qre.1924

Vořechovský M, Eliáš J (2020) Modification of the maximin and $$\phi _p$$ criteria to achieve statistically uniform distribution of sampling points. Technometrics 62(3):371–386. https://doi.org/10.1080/00401706.2019.1639550

Vořechovský M, Mašek J (2020) Distance-based optimal sampling in a hypercube: energy potentials for high-dimensional and low-saturation designs. Adv Eng Soft 149(102):880. https://doi.org/10.1016/j.advengsoft.2020.102880

Vořechovský M, Novák D (2009) Correlation control in small-sample Monte Carlo type simulations i: a simulated annealing approach. Probab Eng Mech 24(3):452–462. https://doi.org/10.1016/j.probengmech.2009.01.004

Wu Z, Wang D, Okolo PN et al (2017) Efficient space-filling and near-orthogonality sequential Latin hypercube for computer experiments. Comput Methods Appl Mech Eng 324:348–365. https://doi.org/10.1016/j.cma.2017.05.020

Wurm A, Bestle D (2016) Robust design optimization for improving automotive shift quality. Optim Eng 17(2):421–436. https://doi.org/10.1007/s11081-015-9290-1

Ye KQ (1998) Orthogonal column Latin hypercubes and their application in computer experiments. J Am Stat Assoc 93(444):1430–1439. https://doi.org/10.1080/01621459.1998.10473803

Ye KQ, Li W, Sudjianto A (2000) Algorithmic construction of optimal symmetric Latin hypercube designs. J stat plan Inference 90(1):145–159. https://doi.org/10.1016/S0378-3758(00)00105-1

Yondo R, Andrés E, Valero E (2018) A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses. Prog Arospace Sci 96:23–61

Zadeh PM, Mehmani A, Messac A (2016) High fidelity multidisciplinary design optimization of a wing using the interaction of low and high fidelity models. Optim Eng 17(3):503–532. https://doi.org/10.1007/s11081-015-9284-z