Isotopic ratios of Saturn's rings and satellites: Implications for the origin of water and Phoebe

Icarus - Tập 321 - Trang 791-802 - 2019
Roger N. Clark1, Robert H. Brown2, Dale P. Cruikshank3, Gregg A. Swayze4
1Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395, USA
2University of Arizona, Department of Planetary Sciences, Lunar & Planetary Laboratory, 1629 E. University Blvd, Tucson, AZ 85721-0092, USA
3Astrophysics Branch, NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
4U.S. Geological Survey, Mail Stop 964, Box 25046, Denver Federal Center, Denver, CO 80225, USA

Tài liệu tham khảo

Albertsson, 2014, Chemodynamical deuterium fractionation in the early solar nebula: The origin of water on earth and in asteroids and comets, Astrophys. J., 784, 1 Alexander, 2012, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets, Science, 337, 721, 10.1126/science.1223474 Alexander, 2017, The origin of inner Solar System water, Phil. Trans. Royal Soc. A., 375 Alexander, 2018, Water reservoirs in small planetary bodies: Meteorites, asteroids, and comets, Space Sci. Rev., 214, 36, 10.1007/s11214-018-0474-9 Blake, 1991, Clathrate hydrate formation in amorphous cometary ice analogs in vacuo, Science, 254, 548, 10.1126/science.11538372 Boogert, 2000, ISO-SWS observations of interstellar solid 13CO2: Heated ice and the Galactic 12C/13C abundance ratio, Astron. Astrophys., 353, 349 Brown, 2005, The Cassini visual and infrared mapping spectrometer investigation, Space Sci. Rev., 115, 111 Brown, 2012, Experimental and theoretical simulations of ice sublimation with implications for the chemical, isotopic, and physical evolution of icy objects, Planetary Space Sci., 60, 166, 10.1016/j.pss.2011.07.023 Buratti, 2005, Cassini visual and infrared mapping spectrometer observations of iapetus: Detection of CO2, Astrophy. J., 622, L149, 10.1086/429800 Chaban, 2007, Carbon dioxide on planetary bodies: Theoretical and experimental studies of molecular complexes, Icarus, 187, 592, 10.1016/j.icarus.2006.10.010 Clark, 2005, Compositional maps of Saturn's moon Phoebe from imaging spectroscopy, Nature, 435, 66, 10.1038/nature03558 Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., Sutley, S.J., 2007. USGS digital spectral library splib06a. U.S. Geological Survey, Data Series 231, http://speclab.cr.usgs.gov/spectral-lib.html. Clark, 2008, Compositional mapping of Saturn's satellite Dione with Cassini VIMS and implications of dark material in the Saturn system, Icarus, 193, 372, 10.1016/j.icarus.2007.08.035 Clark, 2012, The composition of Iapetus: Mapping results from Cassini VIMS, Icarus, 218, 831, 10.1016/j.icarus.2012.01.008 Clark, R.N., Brown, R.H., Lytle, D.M., and Hedman, M., 2018. The VIMS wavelength and radiometric calibration 19, Final Report. NASA Planetary Data System, The Planetary Atmospheres Node, 30 p. http://atmos.nmsu.edu/data_and_services/atmospheres_data/Cassini/vims.html. Coplen, T.B., Hopple, J.A., Böhlke, J.K., Peiser, H.S., Rieder, S.E., Krouse, H.R., Rosman, K.J.R., Ding, T., Vocke, R.D. Jr., Révész, K.M., Lamberty, A., Taylor, P. and De Bièvre, P., 2002. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. U.S. Geological Survey, Water-Resources Investigations Report 01-4222. Cruikshank, 2010, Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale, Icarus, 206, 561, 10.1016/j.icarus.2009.07.012 Cruikshank, 2014, Aromatic and aliphatic organic materials on Iapetus: Analysis of Cassini VIMS data, Icarus, 233, 306, 10.1016/j.icarus.2014.02.011 Dalle Ore, 2012, Infrared spectroscopic characterization of the low-albedo materials on Iapetus, Icarus, 221, 735, 10.1016/j.icarus.2012.09.010 Drake, 2005, Origin of water in the terrestrial planets, Meteorit. Planet. Sci., 40, 519, 10.1111/j.1945-5100.2005.tb00960.x Fanale, 1984, An idealized short-period comet model - Surface insolation, H2O flux, dust flux, and mantle evolution, Icarus, 60, 476, 10.1016/0019-1035(84)90157-X Fanale, 1987, The influence of CO ice on the activity and near-surface differentiation of comet nuclei, Icarus, 84, 403, 10.1016/0019-1035(90)90046-C Gonfiantini, 1978, Standards for stable isotope measurements in natural compounds, Nature, 271, 534, 10.1038/271534a0 Hallis, 2017, D/H ratios of the inner Solar System, Phil. Trans. R. Soc., A 375 Johnson, 2005, Saturn's moon Phoebe as a captured body from the outer Solar System, Nature, 435, 69, 10.1038/nature03384 Jura, 1982, Abundance fluctuations in the interstellar medium, 54 Kedziora-Chudczer, 2013, Observations of the D/H ratio in methane in the atmosphere of Saturn's moon, Titan-where did the Saturnian system form, 53 Keller, 2000, Analysis of a deuterium-rich interplanetary dust particle and implications for presolar materials in IDPs, J. Geophys. Res., 105, 10397, 10.1029/1999JA900395 Linsky, 2006, What is the total deuterium abundance in the local galactic disk, Astroph. J., 647, 1106, 10.1086/505556 Lecluse, 1996, Deuterium enrichment in giant planets, Planetary Space Sci., 44, 1579, 10.1016/S0032-0633(96)00070-0 Lecuyer, 1998, The hydrogen isotope composition of seawater and the globalwater cycle, Chem. Geol., 145, 249, 10.1016/S0009-2541(97)00146-0 Lecuyer, 2017, D/H fractionation during the sublimation of water ice, Icarus, 285, 1, 10.1016/j.icarus.2016.12.015 Marty, 2016, Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission, Earth and Planetary Science Letters, 441, 91, 10.1016/j.epsl.2016.02.031 Mastrapa, 2008, Optical constants of amorphous and crystalline H2O–ice in the near infrared from 1.1 to 2.6μm, Icarus, 197, 307, 10.1016/j.icarus.2008.04.008 Mastrapa, 2009, Optical constants of amorphous and crystalline H2O-ice: 2.5–22μm (4000–455 cm−1), Astroph. J., 710, 1347, 10.1088/0004-637X/701/2/1347 Messenger, 1997, Evidence for molecular cloud material in meteorites and interplanetary dust, 545 Moores, 2012, Experimental and theoretical simulation of sublimating dusty water ice with implications for D/H ratios of water ice on Comets and Mars, Planetary Sci., 1, 2, 10.1186/2191-2521-1-2 Morbidelli, 2000, Source regions and time scales for the delivery of water to Earth, Meteorit. Planet. Sci., 35, 1309, 10.1111/j.1945-5100.2000.tb01518.x Owen, 1988, Deuterium on Mars: The Abundance of HDO and the value of D/H, Science, 240, 1767, 10.1126/science.240.4860.1767 Palmer, 2011, Production and detection of carbon dioxide on Iapetus, Icarus, 212, 807, 10.1016/j.icarus.2010.12.007 Piani, 2018, A dual origin for water in carbonaceous asteroids revealed by CM chondrites, Nat. Astron., 2, 317, 10.1038/s41550-018-0413-4 Pinilla-Alonso, 2011, Iapetus surface variability revealed from statistical clustering of a VIMS mosaic: The distribution of CO2, Icarus, 215, 75, 10.1016/j.icarus.2011.07.004 Porco, 2005, Cassini imaging science: Initial results on Phoebe and Iapetus, Science, 307, 1237, 10.1126/science.1107981 Robert, 2006, Solar system deuterium/hydrogen ratio, 341 Roberts, 2003, Enhanced deuterium fractionation in dense interstellar cores resulting from multiply deuterated H3+, Astroph. J. Let., 591, L41, 10.1086/376962 Roberts, 2004, The chemistry of multiply deuterated species in cold, dense interstellar cores, Astron. Astrophys., 424, 905, 10.1051/0004-6361:20040441 Stephant, 2017, Water in type I chondrules of Paris CM chondrite, Geochim. Cosmochim. Acta, 199, 75, 10.1016/j.gca.2016.11.031 Tielens, 2010, 510 Waite, 2009, Liquid water on Enceladus from observations of ammonia and 40Ar in the plume, Nature, 460, 487, 10.1038/nature08153 Walsh, 2011, A low mass for Mars from Jupiter's early gas-driven migration, Nature, 475, 206, 10.1038/nature10201 Weinberg, 2017, On the Deuterium-to-hydrogen Ratio of the Interstellar Medium, Astrophys. J., 851, 10.3847/1538-4357/aa96b2 Yang, 2013, The D/H ratio of water in the solar nebula during its formation and evolution, Icarus, 226, 256, 10.1016/j.icarus.2013.05.027