Isotopic ratios of Saturn's rings and satellites: Implications for the origin of water and Phoebe
Tài liệu tham khảo
Albertsson, 2014, Chemodynamical deuterium fractionation in the early solar nebula: The origin of water on earth and in asteroids and comets, Astrophys. J., 784, 1
Alexander, 2012, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets, Science, 337, 721, 10.1126/science.1223474
Alexander, 2017, The origin of inner Solar System water, Phil. Trans. Royal Soc. A., 375
Alexander, 2018, Water reservoirs in small planetary bodies: Meteorites, asteroids, and comets, Space Sci. Rev., 214, 36, 10.1007/s11214-018-0474-9
Blake, 1991, Clathrate hydrate formation in amorphous cometary ice analogs in vacuo, Science, 254, 548, 10.1126/science.11538372
Boogert, 2000, ISO-SWS observations of interstellar solid 13CO2: Heated ice and the Galactic 12C/13C abundance ratio, Astron. Astrophys., 353, 349
Brown, 2005, The Cassini visual and infrared mapping spectrometer investigation, Space Sci. Rev., 115, 111
Brown, 2012, Experimental and theoretical simulations of ice sublimation with implications for the chemical, isotopic, and physical evolution of icy objects, Planetary Space Sci., 60, 166, 10.1016/j.pss.2011.07.023
Buratti, 2005, Cassini visual and infrared mapping spectrometer observations of iapetus: Detection of CO2, Astrophy. J., 622, L149, 10.1086/429800
Chaban, 2007, Carbon dioxide on planetary bodies: Theoretical and experimental studies of molecular complexes, Icarus, 187, 592, 10.1016/j.icarus.2006.10.010
Clark, 2005, Compositional maps of Saturn's moon Phoebe from imaging spectroscopy, Nature, 435, 66, 10.1038/nature03558
Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., Sutley, S.J., 2007. USGS digital spectral library splib06a. U.S. Geological Survey, Data Series 231, http://speclab.cr.usgs.gov/spectral-lib.html.
Clark, 2008, Compositional mapping of Saturn's satellite Dione with Cassini VIMS and implications of dark material in the Saturn system, Icarus, 193, 372, 10.1016/j.icarus.2007.08.035
Clark, 2012, The composition of Iapetus: Mapping results from Cassini VIMS, Icarus, 218, 831, 10.1016/j.icarus.2012.01.008
Clark, R.N., Brown, R.H., Lytle, D.M., and Hedman, M., 2018. The VIMS wavelength and radiometric calibration 19, Final Report. NASA Planetary Data System, The Planetary Atmospheres Node, 30 p. http://atmos.nmsu.edu/data_and_services/atmospheres_data/Cassini/vims.html.
Coplen, T.B., Hopple, J.A., Böhlke, J.K., Peiser, H.S., Rieder, S.E., Krouse, H.R., Rosman, K.J.R., Ding, T., Vocke, R.D. Jr., Révész, K.M., Lamberty, A., Taylor, P. and De Bièvre, P., 2002. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. U.S. Geological Survey, Water-Resources Investigations Report 01-4222.
Cruikshank, 2010, Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale, Icarus, 206, 561, 10.1016/j.icarus.2009.07.012
Cruikshank, 2014, Aromatic and aliphatic organic materials on Iapetus: Analysis of Cassini VIMS data, Icarus, 233, 306, 10.1016/j.icarus.2014.02.011
Dalle Ore, 2012, Infrared spectroscopic characterization of the low-albedo materials on Iapetus, Icarus, 221, 735, 10.1016/j.icarus.2012.09.010
Drake, 2005, Origin of water in the terrestrial planets, Meteorit. Planet. Sci., 40, 519, 10.1111/j.1945-5100.2005.tb00960.x
Fanale, 1984, An idealized short-period comet model - Surface insolation, H2O flux, dust flux, and mantle evolution, Icarus, 60, 476, 10.1016/0019-1035(84)90157-X
Fanale, 1987, The influence of CO ice on the activity and near-surface differentiation of comet nuclei, Icarus, 84, 403, 10.1016/0019-1035(90)90046-C
Gonfiantini, 1978, Standards for stable isotope measurements in natural compounds, Nature, 271, 534, 10.1038/271534a0
Hallis, 2017, D/H ratios of the inner Solar System, Phil. Trans. R. Soc., A 375
Johnson, 2005, Saturn's moon Phoebe as a captured body from the outer Solar System, Nature, 435, 69, 10.1038/nature03384
Jura, 1982, Abundance fluctuations in the interstellar medium, 54
Kedziora-Chudczer, 2013, Observations of the D/H ratio in methane in the atmosphere of Saturn's moon, Titan-where did the Saturnian system form, 53
Keller, 2000, Analysis of a deuterium-rich interplanetary dust particle and implications for presolar materials in IDPs, J. Geophys. Res., 105, 10397, 10.1029/1999JA900395
Linsky, 2006, What is the total deuterium abundance in the local galactic disk, Astroph. J., 647, 1106, 10.1086/505556
Lecluse, 1996, Deuterium enrichment in giant planets, Planetary Space Sci., 44, 1579, 10.1016/S0032-0633(96)00070-0
Lecuyer, 1998, The hydrogen isotope composition of seawater and the globalwater cycle, Chem. Geol., 145, 249, 10.1016/S0009-2541(97)00146-0
Lecuyer, 2017, D/H fractionation during the sublimation of water ice, Icarus, 285, 1, 10.1016/j.icarus.2016.12.015
Marty, 2016, Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission, Earth and Planetary Science Letters, 441, 91, 10.1016/j.epsl.2016.02.031
Mastrapa, 2008, Optical constants of amorphous and crystalline H2O–ice in the near infrared from 1.1 to 2.6μm, Icarus, 197, 307, 10.1016/j.icarus.2008.04.008
Mastrapa, 2009, Optical constants of amorphous and crystalline H2O-ice: 2.5–22μm (4000–455 cm−1), Astroph. J., 710, 1347, 10.1088/0004-637X/701/2/1347
Messenger, 1997, Evidence for molecular cloud material in meteorites and interplanetary dust, 545
Moores, 2012, Experimental and theoretical simulation of sublimating dusty water ice with implications for D/H ratios of water ice on Comets and Mars, Planetary Sci., 1, 2, 10.1186/2191-2521-1-2
Morbidelli, 2000, Source regions and time scales for the delivery of water to Earth, Meteorit. Planet. Sci., 35, 1309, 10.1111/j.1945-5100.2000.tb01518.x
Owen, 1988, Deuterium on Mars: The Abundance of HDO and the value of D/H, Science, 240, 1767, 10.1126/science.240.4860.1767
Palmer, 2011, Production and detection of carbon dioxide on Iapetus, Icarus, 212, 807, 10.1016/j.icarus.2010.12.007
Piani, 2018, A dual origin for water in carbonaceous asteroids revealed by CM chondrites, Nat. Astron., 2, 317, 10.1038/s41550-018-0413-4
Pinilla-Alonso, 2011, Iapetus surface variability revealed from statistical clustering of a VIMS mosaic: The distribution of CO2, Icarus, 215, 75, 10.1016/j.icarus.2011.07.004
Porco, 2005, Cassini imaging science: Initial results on Phoebe and Iapetus, Science, 307, 1237, 10.1126/science.1107981
Robert, 2006, Solar system deuterium/hydrogen ratio, 341
Roberts, 2003, Enhanced deuterium fractionation in dense interstellar cores resulting from multiply deuterated H3+, Astroph. J. Let., 591, L41, 10.1086/376962
Roberts, 2004, The chemistry of multiply deuterated species in cold, dense interstellar cores, Astron. Astrophys., 424, 905, 10.1051/0004-6361:20040441
Stephant, 2017, Water in type I chondrules of Paris CM chondrite, Geochim. Cosmochim. Acta, 199, 75, 10.1016/j.gca.2016.11.031
Tielens, 2010, 510
Waite, 2009, Liquid water on Enceladus from observations of ammonia and 40Ar in the plume, Nature, 460, 487, 10.1038/nature08153
Walsh, 2011, A low mass for Mars from Jupiter's early gas-driven migration, Nature, 475, 206, 10.1038/nature10201
Weinberg, 2017, On the Deuterium-to-hydrogen Ratio of the Interstellar Medium, Astrophys. J., 851, 10.3847/1538-4357/aa96b2
Yang, 2013, The D/H ratio of water in the solar nebula during its formation and evolution, Icarus, 226, 256, 10.1016/j.icarus.2013.05.027