Isotope Effect of Hot Electrons Generated on Pt Nanoparticle Surfaces Under H2 and D2 Oxidation

Topics in Catalysis - Tập 61 - Trang 915-922 - 2018
Hyosun Lee1,2, Ievgen I. Nedrygailov1, Si Woo Lee1,2, Jeong Young Park1,2
1Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
2Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

Tóm tắt

Hot electrons are generated when an exothermic chemical reaction takes place on the surface of a metal catalyst. Detection of these electrons using a catalytic nanodiode based on a metal-semiconductor Schottky junction can shed light on the mechanisms for energy transfer between the reacting molecules and the catalyst. Here, we present a study on the isotope effect of hot electron generation during the catalytic water formation reaction on platinum nanoparticles. To elucidate the isotope effect of hot electrons and to distinguish the reaction steps responsible for the creation of hot electrons, we carried out H2 and D2 oxidation reactions. We also considered the dependence of hot electron flux across the nanodiode on the temperature and geometry of the catalyst. Based on these results, we conclude that the observed effect of hot electron creation is mainly associated with energy released during the surface reaction of adsorbed hydrogen atoms and hydroxyl radicals, i.e. $${\text{H}}+{\text{OH}} \to {{\text{H}}_2}{\text{O,}}$$ at high gas pressure.

Tài liệu tham khảo

Park JY (2014) Current trends of surface science and catalysis. Springer, New York Park JY, Baker LR, Somorjai GA (2015) Chem Rev 115:2781–2817 Nedrygailov II, Park JY (2016) Chem Phys Lett 645:5–14 Kim SM, Lee H, Park JY (2015) Catal Lett 145:299–308 Nienhaus H (2002) Surf Sci Rep 45:1–78 Hasselbrink E (2006) Curr Opin Solid State Mater Sci 10:192–204 Wodtke AM, Matsiev D, Auerbach DJ (2008) Prog Surf Sci 83:167–214 Wodtke AM (2016) Chem Soc Rev 45:3641–3657 Hasselbrink E (2009) Surf Sci 603:1564–1570 Park JY, Kim SM, Lee H, Nedrygailov II (2015) Acc Chem Res 48:2475–2483 Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212–9228 Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589–16605 Born M, Oppenheimer R (1927) Ann Phys 389:457–484 Huang Y, Wodtke AM, Hou H, Rettner CT, Auerbach DJ (2000) Phys Rev Lett 84:2985–2988 Pavanello M, Auerbach DJ, Wodtke AM, Blanco-Rey M, Alducin M, Kroes G-J (2013) J Phys Chem Lett 4:3735–3740 Nienhaus H, Bergh HS, Gergen B, Majumdar A, Weinberg WH, McFarland EW (1999) Appl Phys Lett 74:4046–4048 Karpov EG, Nedrygailov I (2010) Phys Rev B 81:205443 Karpov EG, Hashemian MA, Dasari SK (2013) J Phys Chem C 117:15632–15638 Dasari SK, Hashemian MA, Mohan J, Karpov EG (2012) Chem Phys Lett 553:47–50 Schierbaum K, Achhab M (2011) Phys Status Solidi A 208:2796–2802 Lee H, Nedrygailov II, Lee C, Somorjai GA, Park JY (2015) Angew Chem Int Ed 54:2340–2344 Park JY, Lee H, Renzas JR, Zhang Y, Somorjai GA (2008) Nano Lett 8:2388–2392 Hervier A, Renzas JR, Park JY, Somorjai GA (2009) Nano Lett 9:3930–3933 Lee H, Nedrygailov II, Lee YK, Lee C, Choi H, Choi JS, Choi C-G, Park JY (2016) Nano Lett 16:1650–1656 Greber T (1997) Surf Sci Rep 28:1–64 Somorjai GA (2004) Catal Lett 101:1–3 Nienhaus H, Gergen B, Weinberg WH, McFarland EW (2002) Surf Sci 514:172–181 Hashemian MA, Palacios E, Nedrygailov II, Diesing D, Karpov EG (2013) ACS Appl Mater Interfaces 5:12375–12379 Cakabay Ö, El Achhab M, Schierbaum K (2014) Appl Phys A 118:1127–1132 Nienhaus H, Bergh HS, Gergen B, Majumdar A, Weinberg WH, McFarland EW (2000) Surf Sci 445:335–342 Williams WR, Marks CM, Schmidt LD (1992) J Phys Chem 96:5922–5931 Hellsing B, Kasemo B, Zhdanov VP (1991) J Catal 132:210–228 Nienhaus H, Bergh HS, Gergen B, Majumdar A, Weinberg WH, McFarland EW (1999) Phys Rev Lett 82:446–449 Ferreira de Morais R, Franco AA, Sautet P, Loffreda D (2015) ACS Catal 5:1068–1077 Michaelides A, Hu P (2001) J Am Chem Soc 123:4235–4242 Mildner B, Hasselbrink E, Diesing D (2006) Chem Rev Lett 432:133–138 Trail JR, Graham MC, Bird DM, Persson M, Holloway S (2002) Phys Rev Lett 88:166802 Trail JR, Bird DM, Persson M, Holloway S (2003) J Chem Phys 119:4539–4549 Park JY, Renzas JR, Contreras AM, Somorjai GA (2007) Top Catal 46:217–222 Nedrygailov II, Karpov EG, Hasselbrink E, Diesing D (2013) J Vac Sci Tech A 31:021101 Creighton JR, Coltrin ME (2011) J Phys Chem C 116:1139–1144 Frese KW, Chen C (1992) J Electrochem Soc 139:3234–3243 Nedrygailov II, Lee C, Moon SY, Lee H, Park JY (2016) Angew Chem Int Ed 128:11017–11020 Hellsing B, Kasemo B, Ljungström S, Rosén A, Wahnström T (1987) Surf Sci 189/190:851–860 Ljungström S, Kasemo B, Rosén A, Wahnström T, Fridell E (1989) Surf Sci 216:63–92