Isothermal decomposition of CL- 20 before and after thermally induced ε-γ crystal transformation

Huan Peng1, Bo Jin1, Jian Guan1, Liqiong Luo1, Tao Huang1, Rufang Peng1
1State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

Tài liệu tham khảo

Sinditskii, 2019, Combustion of CL-20 cocrystals, Combust. Flame, 207, 51, 10.1016/j.combustflame.2019.05.039 Nair, 2005, Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations Comb, Exp. Shock Waves, 41, 121, 10.1007/s10573-005-0014-2 R.L. Simpson, P.A. Urtiew, D.L. Ornellas. CL-20 perform-ance exceeds that of HMX and its sensitivity is moderate. Propell. Explos. Pyrot,22(5) (1997) 249 -255.. Zhang, 2020, Energetic properties, thermal behavior and thermal safety of 4-(2,2,2-trinitroethyl)-2,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitane, J. Anal. Appl. Pyrol., 152, 104924, 10.1016/j.jaap.2020.104924 Yu, 2013, Effects of binders and graphite on the sensitivity of ε-HNIW, J. Therm. Anal. Calorim., 112, 1343, 10.1007/s10973-012-2679-6 Song, 2011, Recent research progress and application prospect of high energy densitycoin pound HNIW, Chem. Propell. Poly. Mater., 9, 40 Karakaya, 2005, Aqueous solubility and alkaline hydrolysis of the novel high explosive hexanitrohexaazaisowurtzitane (CL-20), J. Hazard. Mater., 120, 183, 10.1016/j.jhazmat.2005.01.001 Zhou, 2002, Theoretical investigation of four conformations of HNIW by B3LYP method, J. Mol. Struc., 589–590, 273, 10.1016/S0166-1280(02)00282-8 Turcotte, 2005, Thermal study of HNIW (CL-20), Thermochim. Acta, 433, 105, 10.1016/j.tca.2005.02.021 Gołofit, 2015, Thermal decomposition properties and compatibility of CL-20 with binders HTPB, PBAN, GAP and polyNIMMO, J. Therm. Anal. Calorim., 119, 1931, 10.1007/s10973-015-4418-2 Wang, 2011, Preparation and Performances of Castable HTPB/CL-20 Booster Explosives, Propell. Explos. Pyrot, 36, 34, 10.1002/prep.200900110 M. Ghosh, V. Venkatesan, S. Mandave, S. Banerjee, N. Sikder, A.K. Sikder, B, Bhattacharya, Probing crystal growth of ε- and β-HNIW polymorphs via metastable phase transition using microscopy and vibrational spectroscopy, Cryst. Growth. Des., 14 (10) (2014) 5053-5063. R.P. B, H.Z. Li, C.Y. Zhang, Polymorphic Transition in Traditional Energetic Materials: Influencing Factors and Effects on Structure, Property, and Performance, Cryst. Growth. Des., 20 (2020) 561-576. Chen, 2012, Effects of additives on ε-HNIW crystal morphology and impact sensitivity, Propell. Explos. Pyrot., 77, 10.1002/prep.201000014 Zharkov, 2018, Micronization of CL-20 using supercritical and liquefied gases, CrystEngComm, 54, 13268 Xu, 2012, Review on polymorphic transformation in CL-20 recrystallization, Chin. J. Energ. Mater., 20, 248 Jessica, 2015, Using solvent effects to guide the design of a HNIW cocrystal, Cryst EngComm, 17, 1564 Karpowiez, 1982, The beta to delta transformation of HMX: Its thermal analysis and relationship to propellants, AIAA J., 20, 1586, 10.2514/3.7992 L ̈obbecke, 1998, Thermal behavior and stability of HNIW ( CL-20), Int. Annu. Conf. ICT, Karlsruhe, 145.1 Wang, 2018, Research on the thermal decomposition kinetics and the isothermal stability of HMX, J. Therm. Anal. Calorim., 135, 513 Li, 2020, Study on the isothermal decomposition of CL-20/HMX co-crystal by microcalorimetry, Thermochim Acta, 690, 178665, 10.1016/j.tca.2020.178665 Galwey, 2020, Thermal reactions involving solids: a personal view of selected features of decompositions, thermal analysis and heterogeneous catalysis, J. Therm. Anal. Calorim., 142, 1123, 10.1007/s10973-020-09461-w Huang, 2020, Isothermal thermal decomposition and mechanism of N-guanylurea dinitramide, J. Therm. Anal. Calorim., 1 Luo, 2020, Isothermal thermal decomposition of CL-20/HMX co-crystal explosive, CrystEngComm, 22, 1473, 10.1039/C9CE01850F Luo, 2019, Interaction and mechanism of nitrocellulose and N-methyl-4-nitroaniline by isothermal decomposition method, Cellulose, 26, 9021, 10.1007/s10570-019-02691-8 L.Q. Luo, B. Jin, Y.Y. Xiao, Q.C. Zhang, Z.H. Chai, Q. Huang, S.J. Chu,R.F. Peng. Study on the isothermal decomposition kinetics and mechanism ofnitrocellulose, Polymer Testing 75 (2019)337-343. Zhao, 2007, A study of kinetic behavious of the effective centralite/stabilizer consumption reaction of propellants using a multi-temperature artificial accelerated ageing test, J. Hazard. Mater., 145, 45 An, 2017, Nano-CL-20/HMX cocrystal explosive for significantly reduced mechanical sensitivity, J. Nano., 5, 1 Zhu, 2017, Ultrasonic-as-sisted emulsion synthesis of well-distributed spherical composite CL-20@PNA with enhanced high sensitivity, Mater. Lett., 205, 94, 10.1016/j.matlet.2017.06.064 Bao, 2013, Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal, J. Mol. Struc., 1048, 267, 10.1016/j.molstruc.2013.05.025 Zhao, 2019, Temperature Response Law of the Internal and External Groups of CL-20 Molecule Skeleton by In-situ Infrared Spectroscopy, Chin. J. Energ. Mater., 27, 845 Naik, 2008, Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography-mass spectrometry (Py-GC/MS), J. Hazard. Mater., 159, 630, 10.1016/j.jhazmat.2008.02.049 Wang, 2010, Investigation on thermal decomposition of CL-20 by T·Jump/FTIR, J. of Solid Rocket Technology, 33, 675 Brill, 1992, Connection the chemical composition of a material to its combustion characteristic, Prog. Energy. Combust. Sci., 18, 91, 10.1016/0360-1285(92)90019-W Wang, 2018, Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations, J. Phys. Chem. A, 122, 3971, 10.1021/acs.jpca.8b01256