Isothermal decomposition of CL- 20 before and after thermally induced ε-γ crystal transformation
Materials Science and Engineering B: Solid-State Materials for Advanced Technology - Tập 285 - Trang 115941 - 2022
Tài liệu tham khảo
Sinditskii, 2019, Combustion of CL-20 cocrystals, Combust. Flame, 207, 51, 10.1016/j.combustflame.2019.05.039
Nair, 2005, Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations Comb, Exp. Shock Waves, 41, 121, 10.1007/s10573-005-0014-2
R.L. Simpson, P.A. Urtiew, D.L. Ornellas. CL-20 perform-ance exceeds that of HMX and its sensitivity is moderate. Propell. Explos. Pyrot,22(5) (1997) 249 -255..
Zhang, 2020, Energetic properties, thermal behavior and thermal safety of 4-(2,2,2-trinitroethyl)-2,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitane, J. Anal. Appl. Pyrol., 152, 104924, 10.1016/j.jaap.2020.104924
Yu, 2013, Effects of binders and graphite on the sensitivity of ε-HNIW, J. Therm. Anal. Calorim., 112, 1343, 10.1007/s10973-012-2679-6
Song, 2011, Recent research progress and application prospect of high energy densitycoin pound HNIW, Chem. Propell. Poly. Mater., 9, 40
Karakaya, 2005, Aqueous solubility and alkaline hydrolysis of the novel high explosive hexanitrohexaazaisowurtzitane (CL-20), J. Hazard. Mater., 120, 183, 10.1016/j.jhazmat.2005.01.001
Zhou, 2002, Theoretical investigation of four conformations of HNIW by B3LYP method, J. Mol. Struc., 589–590, 273, 10.1016/S0166-1280(02)00282-8
Turcotte, 2005, Thermal study of HNIW (CL-20), Thermochim. Acta, 433, 105, 10.1016/j.tca.2005.02.021
Gołofit, 2015, Thermal decomposition properties and compatibility of CL-20 with binders HTPB, PBAN, GAP and polyNIMMO, J. Therm. Anal. Calorim., 119, 1931, 10.1007/s10973-015-4418-2
Wang, 2011, Preparation and Performances of Castable HTPB/CL-20 Booster Explosives, Propell. Explos. Pyrot, 36, 34, 10.1002/prep.200900110
M. Ghosh, V. Venkatesan, S. Mandave, S. Banerjee, N. Sikder, A.K. Sikder, B, Bhattacharya, Probing crystal growth of ε- and β-HNIW polymorphs via metastable phase transition using microscopy and vibrational spectroscopy, Cryst. Growth. Des., 14 (10) (2014) 5053-5063.
R.P. B, H.Z. Li, C.Y. Zhang, Polymorphic Transition in Traditional Energetic Materials: Influencing Factors and Effects on Structure, Property, and Performance, Cryst. Growth. Des., 20 (2020) 561-576.
Chen, 2012, Effects of additives on ε-HNIW crystal morphology and impact sensitivity, Propell. Explos. Pyrot., 77, 10.1002/prep.201000014
Zharkov, 2018, Micronization of CL-20 using supercritical and liquefied gases, CrystEngComm, 54, 13268
Xu, 2012, Review on polymorphic transformation in CL-20 recrystallization, Chin. J. Energ. Mater., 20, 248
Jessica, 2015, Using solvent effects to guide the design of a HNIW cocrystal, Cryst EngComm, 17, 1564
Karpowiez, 1982, The beta to delta transformation of HMX: Its thermal analysis and relationship to propellants, AIAA J., 20, 1586, 10.2514/3.7992
L ̈obbecke, 1998, Thermal behavior and stability of HNIW ( CL-20), Int. Annu. Conf. ICT, Karlsruhe, 145.1
Wang, 2018, Research on the thermal decomposition kinetics and the isothermal stability of HMX, J. Therm. Anal. Calorim., 135, 513
Li, 2020, Study on the isothermal decomposition of CL-20/HMX co-crystal by microcalorimetry, Thermochim Acta, 690, 178665, 10.1016/j.tca.2020.178665
Galwey, 2020, Thermal reactions involving solids: a personal view of selected features of decompositions, thermal analysis and heterogeneous catalysis, J. Therm. Anal. Calorim., 142, 1123, 10.1007/s10973-020-09461-w
Huang, 2020, Isothermal thermal decomposition and mechanism of N-guanylurea dinitramide, J. Therm. Anal. Calorim., 1
Luo, 2020, Isothermal thermal decomposition of CL-20/HMX co-crystal explosive, CrystEngComm, 22, 1473, 10.1039/C9CE01850F
Luo, 2019, Interaction and mechanism of nitrocellulose and N-methyl-4-nitroaniline by isothermal decomposition method, Cellulose, 26, 9021, 10.1007/s10570-019-02691-8
L.Q. Luo, B. Jin, Y.Y. Xiao, Q.C. Zhang, Z.H. Chai, Q. Huang, S.J. Chu,R.F. Peng. Study on the isothermal decomposition kinetics and mechanism ofnitrocellulose, Polymer Testing 75 (2019)337-343.
Zhao, 2007, A study of kinetic behavious of the effective centralite/stabilizer consumption reaction of propellants using a multi-temperature artificial accelerated ageing test, J. Hazard. Mater., 145, 45
An, 2017, Nano-CL-20/HMX cocrystal explosive for significantly reduced mechanical sensitivity, J. Nano., 5, 1
Zhu, 2017, Ultrasonic-as-sisted emulsion synthesis of well-distributed spherical composite CL-20@PNA with enhanced high sensitivity, Mater. Lett., 205, 94, 10.1016/j.matlet.2017.06.064
Bao, 2013, Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal, J. Mol. Struc., 1048, 267, 10.1016/j.molstruc.2013.05.025
Zhao, 2019, Temperature Response Law of the Internal and External Groups of CL-20 Molecule Skeleton by In-situ Infrared Spectroscopy, Chin. J. Energ. Mater., 27, 845
Naik, 2008, Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography-mass spectrometry (Py-GC/MS), J. Hazard. Mater., 159, 630, 10.1016/j.jhazmat.2008.02.049
Wang, 2010, Investigation on thermal decomposition of CL-20 by T·Jump/FTIR, J. of Solid Rocket Technology, 33, 675
Brill, 1992, Connection the chemical composition of a material to its combustion characteristic, Prog. Energy. Combust. Sci., 18, 91, 10.1016/0360-1285(92)90019-W
Wang, 2018, Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations, J. Phys. Chem. A, 122, 3971, 10.1021/acs.jpca.8b01256