Isomorphisms of $$AC(\sigma )$$ spaces for linear graphs

Advances in Operator Theory - Tập 5 Số 2 - Trang 474-488 - 2020
Al-shakarchi, Shaymaa1, Doust, Ian1
1School of Mathematics and Statistics, University of New South Wales, UNSW, Sydney, Australia

Tóm tắt

We show that among compact subsets of the plane which are drawings of linear graphs, two sets $$\sigma $$ and $$\tau $$ are homeomorphic if and only if the corresponding spaces of absolutely continuous functions (in the sense of Ashton and Doust) are isomorphic as Banach algebras. This gives an analogue for this class of sets to the well-known result of Gelfand and Kolmogorov for $$C(\varOmega )$$ spaces.

Tài liệu tham khảo

citation_journal_title=Stud. Math.; citation_title=Functions of bounded variation on compact subsets of the plane; citation_author=B Ashton, I Doust; citation_volume=169; citation_publication_date=2005; citation_pages=163-188; citation_doi=10.4064/sm169-2-5; citation_id=CR1 citation_journal_title=Proc. Edinb. Math. Soc. (2); citation_title=A comparison of algebras of functions of bounded variation; citation_author=B Ashton, I Doust; citation_volume=49; citation_publication_date=2006; citation_pages=575-591; citation_doi=10.1017/S0013091504001130; citation_id=CR2 citation_journal_title=Integr. Equ. Oper. Theory; citation_title=Compact operators; citation_author=B Ashton, I Doust; citation_volume=63; citation_publication_date=2009; citation_pages=459-472; citation_doi=10.1007/s00020-009-1667-0; citation_id=CR3 citation_journal_title=J. Oper. Theory; citation_title= operators; citation_author=B Ashton, I Doust; citation_volume=65; citation_publication_date=2011; citation_pages=255-279; citation_id=CR4 citation_journal_title=J. Oper. Theory; citation_title= functions on the circle and spectral families; citation_author=E Berkson, TA Gillespie; citation_volume=13; citation_publication_date=1985; citation_pages=33-47; citation_id=CR5 Diestel, R.: Graph Theory, 4th edn, Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2010) Doust, I., Al-shakarchi, S.: Isomorphisms of $$AC(\sigma)$$ spaces for countable sets, The diversity and beauty of applied operator theory, pp. 193–206, Oper. Theory Adv. Appl., vol. 268. Birkhäuser/Springer, Cham (2018) citation_journal_title=Stud. Math.; citation_title=Isomorphisms of spaces; citation_author=I Doust, M Leinert; citation_volume=228; citation_publication_date=2015; citation_pages=7-31; citation_doi=10.4064/sm228-1-3; citation_id=CR8 Doust, I., Leinert, M.: Approximation in $$AC(\sigma)$$ . arXiv:1312.1806v1 (2013) citation_title=Spectral Theory of Linear Operators, London Mathematical Society Monographs; citation_publication_date=1978; citation_id=CR10; citation_author=HR Dowson; citation_publisher=Academic Press citation_journal_title=Proc. Am. Math. Soc.; citation_title=An example in the theory of well-bounded operators; citation_author=HR Dowson, PG Spain; citation_volume=32; citation_publication_date=1972; citation_pages=205-208; citation_doi=10.1090/S0002-9939-1972-0288615-8; citation_id=CR11 citation_title=Topological Graph Theory; citation_publication_date=1987; citation_id=CR12; citation_author=JL Gross; citation_author=TW Tucker; citation_publisher=Wiley