Isometrically embedded polydisks in infinite dimensional Teichmüller spaces
Tóm tắt
We define isometric holomorphic embeddings of the infinite dimensional polydisk D∞ in any infinite dimensional Teichmüller space. These embeddings provide simple new proofs that the Teichmüller metric on any infinite dimensional Teichmüller space is non-differentiable and has arbitrarily short simple closed geodesics. They also lead to a complete characterization of the points in Teichmüller space that lie on more than one straight line through the basepoint.
Tài liệu tham khảo
Busemann, H.The Geometry of Geodesics, Academic Press, New York, NY, 1955.
Earle, C.J. The Teichmüller distance is differentiable,Duke Math. J.,44, 389–397, (1977).
Earle, C.J. and Gardiner, F.P. Geometric isomorphisms between infinite dimensional Teichmüller spaces,Trans. Am. Math. Soc.,348, 1163–1190, (1996).
Earle, C.J., Gardiner, F.P., and Lakic, N. Vector fields for holomorphic motions of closed sets,Contemp. Math.,211, 193–225, (1997).
Earle, C.J., Kra, I., and Krushkal', S.L. Holomorphic motions and Teichmüller spaces,Trans. Am. Math. Soc.,343, 927–948, (1994).
Fehlmann, R. Über extremale quasikonforme Abbildungen,Comment. Math. Helv.,56, 558–580, (1981).
Gardiner, F.P. On the variation of Teichmüller's metric,Proc. Roy. Soc. Edinburgh Sect. A,85, 143–152, (1980).
Gardiner, F.P.Teichmüller Theory and Quadratic Differentials, Wiley-Interscience, New York, 1987.
Gardiner, F.P. On Teichmüller contraction,Proc. Am. Math. Soc.,118, 865–875, (1993).
Gardiner, F.P. and Sullivan, D. Symmetric structures on a closed curve,Am. J. Math.,114, 683–736, (1992).
Goldberg, L.R. On the shape of the unit sphere in Q(Δ),Proc. Am. Math. Soc.,118, 1179–1185, (1993).
Harris, L.A. Schwarz-Pick systems of pseudometrics for domains in normed linear spaces,Advances in Holomorphy, Barroso, J.A., Ed., North-Holland Mathematics Series 34, North-Holland, Amsterdam, 1979.
Kravetz, S. On the geometry of Teichmüller spaces and the structure of their modular groups,Ann. Acad. Sci. Fenn. Ser. A, I Math.,278, 1–35, (1959).
Lakic, N. Strebel points,Contemp. Math.,211, 417–431, (1997).
Li, Z. Non-uniqueness of geodesies in infinite-dimemsional Teichmüller spaces,Complex Variables Theory Appl.,16, 261–272, (1991).
Li, Z. Non-uniqueness of geodesies in infinite-dimemsional Teichmüller spaces (II),Ann. Acad. Sci. Fenn. Ser. A I Math.,18, 355–367, (1993).
Li, Z. Closed geodesies and non-differentiability of the metric in infinite-dimensional Teichmüller spaces,Proc. Am. Math. Soc.,124, 1459–1465, (1996).
Nag, S.The Complex Analytic Theory of Teichmüller Spaces, John Wiley & Sons, New York, 1988.
Reich, E. On the relation between local and global properties of boundary values for extremal quasiconformal mappings,Discontinuous Groups and Riemann Surfaces. Greenberg, L., Ed.,Ann. Math. Stud. 79, Princeton University Press, Princeton, NJ, 391–407, (1974).
Shen, Y-L. On the weak convexity of Q(R),Proc Am. Math. Soc.,124, 1879–1882, (1996).
Strebel, K. Extremal quasiconformal mappings,Resultate Math.,10, 168–210, (1986).
Tanigawa, H. Holomorphic families of geodesic discs in infinite dimensional Teichmüller spaces,Nagoya Math. J.,127, 117–128,(1992).