Isometric embeddings of 2-spheres into Schwarzschild manifolds

manuscripta mathematica - Tập 149 - Trang 459-469 - 2015
Armando J. Cabrera Pacheco1, Pengzi Miao1
1Department of Mathematics, University of Miami, Coral Gables, USA

Tóm tắt

Let g be a Riemannian metric on the 2-sphere S 2. Results on isometric embeddings of (S 2, g) into a fixed model manifold often have implications in quasi-local mass related problems in general relativity. In this paper, motivated by the definitions of the Brown–York and the Wang–Yau mass, we consider isometric embeddings of (S 2, g) into conformally flat spaces. We prove that if g is close to the standard metric on S 2, then (S 2, g) admits an isometric embedding into any spatial Schwarzschild manifold with small mass. We also give a sufficient condition that ensures isometric embeddings of perturbations of a Euclidean convex surface into $${\mathbb{R}^3}$$ equipped with a conformally flat metric.

Tài liệu tham khảo

Bartnik R.: New definition of quasilocal mass. Phys. Rev. Lett. 62(20), 2346–2348 (1989) Brown J.D., York J.W. Jr.: Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. D 3(47(4), 1407–1419 (1993) Fan X.-Q., Shi Y., Tam L.-F.: Large-sphere and small-sphere limits of the Brown–York mass. Commun. Anal. Geom. 17(1), 37–72 (2009) Han, Q., Hong, J.-X.: Isometric embedding of riemannian manifolds in euclidean spaces, mathematical surveys and monographs, vol. 130. American Mathematical Society, Providence (2006) Lin, C.-Y., Wang, Y.-K.: On isometric embeddings into anti-de sitter spacetimes. Int. Math. Res. Notices (2014). doi:10.1093/imrn/rnu157 Nirenberg L.: The Weyl and Minkowski problems in differential geometry in the large. Commun. Pure Appl. Math. 6(3), 337–394 (1953) Pogorelov A.V.: Regularity of a convex surface with given Gaussian curvature. Mat. Sb. 73(1), 88–103 (1952) Shi Y., Wang G., Wu J.: On the behavior of quasi-local mass at the infinity along nearly round surfaces. Ann. Glob. Anal. Geom. 36(4), 419–441 (2009) Wang, M.-T., Yau, S.-T.: Quasilocal mass in general relativity, Phys. Rev. Lett. (2009). doi:10.1103/PhysRevLett.102.021101 Wang M.-T., Yau S.-T.: Isometric embeddings into the Minkowski space and new quasi-local mass. Commun. Math. Phys. 288(3), 919–942 (2009) Weyl, H.: Uber die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement. Vierteljahrsschrift der naturforschenden Gesellschaft, Zürich 61, 40–72 (1916)