Ảnh hưởng của việc nuôi cấy cách ly đến học tập xác suất và tính linh hoạt nhận thức ở chuột

Springer Science and Business Media LLC - Tập 14 - Trang 388-406 - 2013
Nurith Amitai1, Jared W. Young1,2, Kerin Higa1, Richard F. Sharp1, Mark A. Geyer1,2, Susan B. Powell1,2
1Department of Psychiatry, University of California San Diego, La Jolla, USA
2Research Service, VA San Diego Healthcare System, San Diego, USA

Tóm tắt

Việc nuôi cấy cách ly là một phương pháp tác động đến sự phát triển thần kinh, dẫn đến những biến đổi về hóa sinh, cấu trúc và hành vi ở chuột, mà theo nhiều cách giống với triệu chứng của bệnh tâm thần phân liệt. Những triệu chứng do việc nuôi cấy cách ly gây ra phản ánh các khía cạnh lâm sàng có liên quan của bệnh tâm thần phân liệt, chẳng hạn như khiếm khuyết nhận thức, mở ra khả năng thử nghiệm các liệu pháp điều trị giả thuyết trong các động vật được nuôi cấy cách ly trước khi phát triển lâm sàng. Chúng tôi đã điều tra tác động của việc nuôi cấy cách ly đối với tính linh hoạt nhận thức, một chức năng nhận thức thường bị rối loạn trong bệnh tâm thần phân liệt. Để làm điều này, chúng tôi đã đánh giá tính linh hoạt nhận thức bằng cách sử dụng các nhiệm vụ học tập đảo ngược xác suất giữa và trong một phiên, dựa trên các bài kiểm tra lâm sàng. Các con chuột được nuôi cấy cách ly cần nhiều phiên hơn, mặc dù không cần nhiều thử nghiệm nhiệm vụ hơn, để đạt được hiệu suất tiêu chí trong giai đoạn đảo ngược của nhiệm vụ này, và chúng chậm hơn trong việc điều chỉnh chiến lược nhiệm vụ sau khi các điều kiện thưởng được thay đổi. Các con chuột được nuôi cấy cách ly cũng hoàn thành ít thử nghiệm hơn và thể hiện mức độ hoạt động tổng thể thấp hơn trong nhiệm vụ học tập đảo ngược xác suất so với các con chuột được nuôi cấy xã hội. Phát hiện này trái ngược với mức độ hoạt động điều tra không điều kiện cao hơn và mức độ habituation vận động giảm mà các con chuột nuôi cấy cách ly đã thể hiện trong bộ theo dõi mẫu hành vi. Cuối cùng, các con chuột nuôi cấy cách ly cũng thể hiện khiếm khuyết trong việc kiểm soát cảm giác-vận động, được phản ánh bởi việc giảm ức chế tiền âm thanh của phản ứng giật mình, tương thích với các nghiên cứu trước đó. Chúng tôi kết luận rằng việc nuôi cấy cách ly tạo ra một can thiệp có giá trị, không xâm lấn, để mô hình hóa các khiếm khuyết nhận thức giống như bệnh tâm thần phân liệt và đánh giá các liệu pháp điều trị giả thuyết.

Từ khóa

#nuôi cấy cách ly #bệnh tâm thần phân liệt #tính linh hoạt nhận thức #học tập xác suất

Tài liệu tham khảo

Addington, J., Penn, D., Woods, S. W., Addington, D., & Perkins, D. O. (2008). Social functioning in individuals at clinical high risk for psychosis. Schizophrenia Research, 99, 119–124. doi:10.1016/j.schres.2007.10.001 Agid, O., Shapira, B., Zislin, J., Ritsner, M., Hanin, B., Murad, H., . . . Lerer, B. (1999). Environment and vulnerability to major psychiatric illness: A case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Molecular Psychiatry, 4, 163–172. Bakshi, V. P., & Geyer, M. A. (1999). Ontogeny of isolation rearing-induced deficits in sensorimotor gating in rats. Physiology & Behavior, 67, 385–392. Bakshi, V. P., Swerdlow, N. R., Braff, D. L., & Geyer, M. A. (1998). Reversal of isolation rearing-induced deficits in prepulse inhibition by Seroquel and olanzapine. Biological Psychiatry, 43, 436–445. Bari, A., Theobald, D. E., Caprioli, D., Mar, A. C., Aidoo-Micah, A., Dalley, J. W., . . . Robbins, T. W. (2010). Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology, 35, 1290–1301. doi:10.1038/npp.2009.233 Barnett, P. A., & Gotlib, I. H. (1988). Psychosocial functioning and depression: Distinguishing among antecedents, concomitants, and consequences. Psychological Bulletin, 104, 97–126. doi:10.1037/0033-2909.104.1.97 Becker, J., & Kleinman, A. (Eds.). (1991). Psychosocial aspects of depression. Hillsdale, NJ: Erlbaum. Bianchi, M., Fone, K. F., Azmi, N., Heidbreder, C. A., Hagan, J. J., & Marsden, C. A. (2006). Isolation rearing induces recognition memory deficits accompanied by cytoskeletal alterations in rat hippocampus. European Journal of Neuroscience, 24, 2894–2902. Blanc, G., Herve, D., Simon, H., Lisoprawski, A., Glowinski, J., & Tassin, J. P. (1980). Response to stress of mesocortico-frontal dopaminergic neurones in rats after long-term isolation. Nature, 284, 265–267. Boulougouris, V., Dalley, J. W., & Robbins, T. W. (2007). Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behavioural Brain Research, 179, 219–228. doi:10.1016/j.bbr.2007.02.005 Braff, D. L., & Geyer, M. A. (1990). Sensorimotor gating and schizophrenia: Human and animal model studies. Archives of General Psychiatry, 47, 181–188. Braff, D. L., Geyer, M. A., & Swerdlow, N. R. (2001). Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156, 234–258. Braff, D. L., Grillon, C., & Geyer, M. A. (1992). Gating and habituation of the startle reflex in schizophrenic patients. Archives of General Psychiatry, 49, 206–215. Braff, D., Stone, C., Callaway, E., Geyer, M., Glick, I., & Bali, L. (1978). Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology, 15, 339–343. Cannon, T. D., Cadenhead, K., Cornblatt, B., Woods, S. W., Addington, J., Walker, E., . . . Heinssen, R. (2008). Prediction of psychosis in youth at high clinical risk: A multisite longitudinal study in North America. Archives of General Psychiatry, 65, 28–37. doi:10.1001/archgenpsychiatry.2007.3 Cilia, J., Hatcher, P. D., Reavill, C., & Jones, D. N. (2005). Long-term evaluation of isolation-rearing induced prepulse inhibition deficits in rats: An update. Psychopharmacology, 180, 57–62. Cilia, J., Reavill, C., Hagan, J. J., & Jones, D. N. (2001). Long-term evaluation of isolation-rearing induced prepulse inhibition deficits in rats. Psychopharmacology, 156, 327–337. Dalley, J. W., Theobald, D. E., Pereira, E. A., Li, P. M., & Robbins, T. W. (2002). Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology, 164, 329–340. Elvevåg, B., & Goldberg, T. E. (2000). Cognitive impairment in schizophrenia is the core of the disorder. Critical Review of Neurobiology, 14, 1–21. Fellows, L. K., & Farah, M. J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: Evidence from a reversal learning paradigm. Brain, 126, 1830–1837. Fone, K. C., & Porkess, M. V. (2008). Behavioural and neurochemical effects of post-weaning social isolation in rodents—Relevance to developmental neuropsychiatric disorders. Neuroscience and Biobehavioral Reviews, 32, 1087–1102. doi:10.1016/j.neubiorev.2008.03.003 Fulford, A. J., & Marsden, C. A. (1998). Effect of isolation-rearing on conditioned dopamine release in vivo in the nucleus accumbens of the rat. Journal of Neurochemistry, 70, 384–390. Geyer, M. A., Russo, P. V., & Masten, V. L. (1986). Multivariate assessment of locomotor behavior: Pharmacological and behavioral analyses. Pharmacology Biochemistry and Behavior, 25, 277–288. Geyer, M. A., Wilkinson, L. S., Humby, T., & Robbins, T. W. (1993). Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia. Biological Psychiatry, 34, 361–372. Gilmour, G., Arguello, A., Bari, A., Brown, V. J., Carter, C., Floresco, S. B., . . . Robbins, T. W. (in press). Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neuroscience and Biobehavioral Reviews. doi:10.1016/j.neubiorev.2012.04.006 Goldberg, T. E., Weinberger, D. R., Berman, K. F., Pliskin, N. H., & Podd, M. H. (1987). Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test. Archives of General Psychiatry, 44, 1008–1014. Gresack, J. E., Risbrough, V. B., Scott, C. N., Coste, S., Stenzel-Poore, M., Geyer, M. A., & Powell, S. B. (2010). Isolation rearing-induced deficits in contextual fear learning do not require CRF(2) receptors. Behavioural Brain Research, 209, 80–84. doi:10.1016/j.bbr.2010.01.018 Häfner, H., Löffler, W., Maurer, K., Hambrecht, M., & an der Heiden, W. (1999). Depression, negative symptoms, social stagnation and social decline in the early course of schizophrenia. Acta Psychiatrica Scandinavica, 100, 105–118. Hall, F. S. (1998). Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Critical Reviews in Neurobiology, 12, 129–162. Hall, F. S., Huang, S., Fong, G. W., Pert, A., & Linnoila, M. (1998). Effects of isolation-rearing on locomotion, anxiety and responses to ethanol in Fawn Hooded and Wistar rats. Psychopharmacology, 139, 203–209. Hatashita-Wong, M., Smith, T. E., Silverstein, S. M., Hull, J. W., & Willson, D. F. (2002). Cognitive functioning and social problem-solving skills in schizophrenia. Cognitive Neuropsychiatry, 7, 81–95. Heidbreder, C. A., Weiss, I. C., Domeney, A. M., Pryce, C., Homberg, J., Hedou, G., . . . Nelson, P. (2000). Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience, 100, 749–768. Hellemans, K. G., Benge, L. C., & Olmstead, M. C. (2004). Adolescent enrichment partially reverses the social isolation syndrome. Developmental Brain Research, 150, 103–115. Howes, S. R., Dalley, J. W., Morrison, C. H., Robbins, T. W., & Everitt, B. J. (2000). Leftward shift in the acquisition of cocaine self-administration in isolation-reared rats: Relationship to extracellular levels of dopamine, serotonin and glutamate in the nucleus accumbens and amygdala–striatal FOS expression. Psychopharmacology, 151, 55–63. Jones, C. A., Brown, A. M., Auer, D. P., & Fone, K. C. (2011). The mGluR2/3 agonist LY379268 reverses post-weaning social isolation-induced recognition memory deficits in the rat. Psychopharmacology, 214, 269–283. doi:10.1007/s00213-010-1931-7 Jones, G. H., Hernandez, T. D., Kendall, D. A., Marsden, C. A., & Robbins, T. W. (1992). Dopaminergic and serotonergic function following isolation rearing in rats: Study of behavioural responses and postmortem and in vivo neurochemistry. Pharmacology Biochemistry and Behavior, 43, 17–35. Jones, G. H., Marsden, C. A., & Robbins, T. W. (1991). Behavioural rigidity and rule-learning deficits following isolation-rearing in the rat: Neurochemical correlates. Behavioural Brain Research, 43, 35–50. Jones, G. H., Robbins, T. W., & Marsden, C. A. (1989). Isolation-rearing retards the acquisition of schedule-induced polydipsia in rats. Physiology & Behavior, 45, 71–77. King, M. V., Seeman, P., Marsden, C. A., & Fone, K. C. (2009). Increased dopamine D2High receptors in rats reared in social isolation. Synapse, 63, 476–483. doi:10.1002/syn.20624 Krech, D., Rosenzweig, M. R., & Bennett, E. L. (1962). Relations between chemistry and problem-solving among rats raised in enriched and impoverished environments. Journal of Comparative & Physiological Psychology, 55, 801–807. Lapiz, M. D., Mateo, Y., Parker, T., & Marsden, C. (2000). Effects of noradrenaline depletion in the brain on response on novelty in isolation-reared rats. Psychopharmacology, 152, 312–320. Leeson, V. C., Robbins, T. W., Matheson, E., Hutton, S. B., Ron, M. A., Barnes, T. R., & Joyce, E. M. (2009). Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: Stability over six years and specific associations with medication type and disorganization syndrome. Biological Psychiatry, 66, 586–593. doi:10.1016/j.biopsych.2009.05.016 Li, N., Wu, X., & Li, L. (2007). Chronic administration of clozapine alleviates reversal-learning impairment in isolation-reared rats. Behavioural Pharmacology, 18, 135–145. Lim, C., Chong, S. A., & Keefe, R. S. (2009). Psychosocial factors in the neurobiology of schizophrenia: A selective review. Annals: Academy of Medicine Singapore, 38, 402–406. Lukasz, B., O’Sullivan, N. C., Loscher, J. S., Pickering, M., Regan, C. M., & Murphy, K. J. (2013). Peripubertal viral-like challenge and social isolation mediate overlapping but distinct effects on behaviour and brain interferon regulatory factor 7 expression in the adult Wistar rat. Brain, Behavior, and Immunity, 27, 71–79. doi:10.1016/j.bbi.2012.09.011 McCool, B. A., & Chappell, A. M. (2009). Early social isolation in male Long-Evans rats alters both appetitive and consummatory behaviors expressed during operant ethanol self-administration. Alcoholism, Clinical and Experimental Research, 33, 273–282. McLean, S., Grayson, B., Harris, M., Protheroe, C., Woolley, M., & Neill, J. (2010). Isolation rearing impairs novel object recognition and attentional set shifting performance in female rats. Journal of Psychopharmacology, 24, 57–63. doi:10.1177/0269881108093842 Meyer, B., Johnson, S. L., & Winters, R. (2001). Responsiveness to threat and incentive in bipolar disorder: Relations of the BIS/BAS scales with symptoms. Journal of Psychopathology and Behavioral Assessment, 23, 133–143. Mogenson, G. J., & Nielsen, M. (1984). Neuropharmacological evidence to suggest that the nucleus accumbens and subpallidal region contribute to exploratory locomotion. Behavioral and Neural Biology, 42, 52–60. Mogenson, G. J., & Wu, M. (1991). Quinpirole to the accumbens reduces exploratory and amphetamine-elicited locomotion. Brain Research Bulletin, 27, 743–746. Møller, P., & Husby, R. (2000). The initial prodrome in schizophrenia: Searching for naturalistic core dimensions of experience and behavior. Schizophrenia Bulletin, 26, 217–232. Morice, R. (1990). Cognitive inflexibility and pre-frontal dysfunction in schizophrenia and mania. British Journal of Psychiatry, 157, 50–54. Mortimer, A. M. (1997). Cognitive function in schizophrenia: Do neuroleptics make a difference? Pharmacology Biochemistry and Behavior, 56, 789–795. Murphy, F. C., Michael, A., Robbins, T. W., & Sahakian, B. J. (2003). Neuropsychological impairment in patients with major depressive disorder: The effects of feedback on task performance. Psychological Medicine, 33, 455–467. Murray, G. K., Cheng, F., Clark, L., Barnett, J. H., Blackwell, A. D., Fletcher, P. C., . . . Jones, P. B. (2008). Reinforcement and reversal learning in first-episode psychosis. Schizophrenia Bulletin, 34, 848–855. doi:10.1093/schbul/sbn078 Nelson, H. E., Pantelis, C., Carruthers, K., Speller, J., Baxendale, S., & Barnes, T. R. E. (1990). Cognitive functioning and symptomatology in chronic schizophrenia. Psychological Medicine, 20, 357–365. Nuechterlein, K. H., Barch, D. M., Gold, J. M., Goldberg, T. E., Green, M. F., & Heaton, R. K. (2004). Identification of separable cognitive factors in schizophrenia. Schizophrenia Research, 72, 29–39. doi:10.1016/j.schres.2004.09.007 Otto, A. R., Gershman, S. J., Markman, A. B., & Daw, N. D. (2013). The curse of planning: Dissecting multiple reinforcement-learning systems by taxing the central executive. Psychological Science, 24, 751–761. doi:10.1177/0956797612463080 Paulus, M. P., Bakshi, V. P., & Geyer, M. A. (1998). Isolation rearing affects sequential organization of motor behavior in post-pubertal but not pre-pubertal Lister and Sprague-Dawley rats. Behavioural Brain Research, 94, 271–280. Perry, W., Minassian, A., Paulus, M. P., Young, J. W., Kincaid, M. J., Ferguson, E. J., . . . Geyer, M. A. (2009). A reverse-translational study of dysfunctional exploration in psychiatric disorders: From mice to men. Archives of General Psychiatry, 66, 1072–1080. doi:10.1001/archgenpsychiatry.2009.58 Powell, S. B. (2010). Models of neurodevelopmental abnormalities in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 435–481. Powell, S. B., Swerdlow, N. R., Pitcher, L. K., & Geyer, M. A. (2002). Isolation rearing-induced deficits in prepulse inhibition and locomotor habituation are not potentiated by water deprivation. Physiology & Behavior, 77, 55–64. Ragland, J. D., Cools, R., Frank, M., Pizzagalli, D. A., Preston, A., Ranganath, C., & Wagner, A. D. (2009). CNTRICS final task selection: Long-term memory. Schizophrenia Bulletin, 35, 197–212. doi:10.1093/schbul/sbn134 Risbrough, V. B., Masten, V. L., Caldwell, S., Paulus, M. P., Low, M. J., & Geyer, M. A. (2006). Differential contributions of dopamine D1, D2, and D3 receptors to MDMA-induced effects on locomotor behavior patterns in mice. Neuropsychopharmacology, 31, 2349–2358. Robbins, T. W., Jones, G. H., & Wilkinson, L. S. (1996). Behavioural and neurochemical effects of early social deprivation in the rat. Journal of Psychopharmacology, 10, 39–47. Roiser, J. P., Cannon, D. M., Gandhi, S. K., Taylor Tavares, J., Erickson, K., Wood, S., . . . Drevets, W. C. (2009). Hot and cold cognition in unmedicated depressed subjects with bipolar disorder. Bipolar Disorders, 11, 178–189. doi:10.1111/j.1399-5618.2009.00669.x Rygula, R., Walker, S. C., Clarke, H. F., Robbins, T. W., & Roberts, A. C. (2010). Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning. Journal of Neuroscience, 30, 14552–14559. Sahakian, B. J., Robbins, T. W., Morgan, M. J., & Iversen, S. D. (1975). The effects of psychomotor stimulants on stereotypy and locomotor activity in socially-deprived and control rats. Brain Research, 84, 195–205. Santesso, D. L., Steele, K. T., Bogdan, R., Holmes, A. J., Deveney, C. M., Meites, T. M., & Pizzagalli, D. A. (2008). Enhanced negative feedback responses in remitted depression. NeuroReport, 19, 1045–1048. doi:10.1097/WNR.0b013e3283036e73 Schrijver, N. C., Pallier, P. N., Brown, V. J., & Wurbel, H. (2004). Double dissociation of social and environmental stimulation on spatial learning and reversal learning in rats. Behavioural Brain Research, 152, 307–314. Schrijver, N. C., & Wurbel, H. (2001). Early social deprivation disrupts attentional, but not affective, shifts in rats. Behavioral Neuroscience, 115, 437–442. Schubert, M. I., Porkess, M. V., Dashdorj, N., Fone, K. C., & Auer, D. P. (2009). Effects of social isolation rearing on the limbic brain: A combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience, 159, 21–30. Sharma, T., & Antonova, L. (2003). Cognitive function in schizophrenia: Deficits, functional consequences, and future treatment. Psychiatric Clinics of North America, 26, 25–40. Svensson, L., & Ahlenius, S. (1983). Suppression of exploratory locomotor activity in the rat by the local application of 3-PPP enantiomers into the nucleus accumbens. European Journal of Pharmacology, 88, 393–397. Taylor Tavares, J. V., Clark, L., Furey, M. L., Williams, G. B., Sahakian, B. J., & Drevets, W. C. (2008). Neural basis of abnormal response to negative feedback in unmedicated mood disorders. NeuroImage, 42, 1118–1126. Tyson, P. J., Laws, K. R., Flowers, K. A., Tyson, A., & Mortimer, A. M. (2006). Cognitive function and social abilities in patients with schizophrenia: Relationship with atypical antipsychotics. Psychiatry and Clinical Neurosciences, 60, 473–479. Valzelli, L. (1973). The “isolation syndrome” in mice. Psychopharmacologia, 31, 305–320. van den Buuse, M. (2010). Modeling the positive symptoms of schizophrenia in genetically modified mice: Pharmacology and methodology aspects. Schizophrenia Bulletin, 36, 246–270. doi:10.1093/schbul/sbp132 Varty, G. B., & Geyer, M. A. (1998). Effects of isolation rearing on startle reactivity, habituation, and prepulse inhibition in male Lewis, Sprague-Dawley, and Fischer F344 rats. Behavioral Neuroscience, 112, 1450–1457. Varty, G. B., & Higgins, G. A. (1995). Examination of drug-induced and isolation-induced disruptions of prepulse inhibition as models to screen antipsychotic drugs. Psychopharmacology, 122, 15–26. Varty, G. B., Paulus, M. P., Braff, D. L., & Geyer, M. A. (2000). Environmental enrichment and isolation rearing in the rat: Effects on locomotor behavior and startle response plasticity. Biological Psychiatry, 47, 864–873. Waltz, J. A., Frank, M. J., Robinson, B. M., & Gold, J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal–cortical dysfunction. Biological Psychiatry, 62, 756–764. doi:10.1016/j.biopsych.2006.09.042 Waltz, J. A., & Gold, J. M. (2007). Probabilistic reversal learning impairments in schizophrenia: Further evidence of orbitofrontal dysfunction. Schizophrenia Research, 93, 296–303. Warren, J. M. (1966). Reversal learning and the formation of learning sets by cats and rhesus monkeys. Journal of Comparative & Physiological Psychology, 61, 421–428. Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660–669. Wilkinson, L. S., Killcross, S. S., Humby, T., Hall, F. S., Geyer, M. A., & Robbins, T. W. (1994). Social isolation in the rat produces developmentally specific deficits in prepulse inhibition of the acoustic startle response without disrupting latent inhibition. Neuropsychopharmacology, 10, 61–72. Wongwitdecha, N., & Marsden, C. A. (1996). Effects of social isolation rearing on learning in the Morris water maze. Brain Research, 715, 119–124. Wunderlich, K., Smittenaar, P., & Dolan, R. J. (2012). Dopamine enhances model-based over model-free choice behavior. Neuron, 75, 418–424. Young, J. W., Minassian, A., Paulus, M. P., Geyer, M. A., & Perry, W. (2007). A reverse-translational approach to bipolar disorder: Rodent and human studies in the Behavioral Pattern Monitor. Neuroscience and Biobehavioral Reviews, 31, 882–896. doi:10.1016/j.neubiorev.2007.05.009 Zeeb, F. D., Wong, A. C., & Winstanley, C. A. (2013). Differential effects of environmental enrichment, social-housing, and isolation-rearing on a rat gambling task: Dissociations between impulsive action and risky decision-making. Psychopharmacology, 225, 381–395. doi:10.1007/s00213-012-2822-x