Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases
Tóm tắt
Từ khóa
Tài liệu tham khảo
Le DT, Vu NT (2017) Progress of loop-mediated isothermal amplification technique in molecular diagnosis of plant disease. Appl Biol Chem 60:169–180
Hausbeck MK, Lamour KH (2004) Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis 88:1292–1303
Gisi U, Cohen Y (1996) Resistance to phenylamide fungicides: a case study with phytophthora infestans involving mating type and race structure. Annu Rev Phytopathol 34:549–572
Hallberg GR (1987) Agricultural chemicals in ground water: extent and implications. Am J Altern Agric 2:3–15
Kim HS, Sang MK, Jeun YC, Hwang BK, Kim KD (2008) Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper. Crop Prot 27:436–443
Heungens K, Parke J (2001) Postinfection biological control of oomycete pathogens of pea by Burkholderia cepacia AMMDR1. Phytopathology 91:383–391
Howell C, Stipanovic R (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482
Baker C, Stavely J, Mock N (1985) Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Dis 69:770–772
Cimermancic P, Medema MH, Claesen J, Kurita K, Brown LCW, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421
Jeong Y, Kim J, Kim S, Kang Y, Nagamatsu T, Hwang I (2003) Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis 87:890–895
Cartwright DK, Chilton W, Benson D (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5 B, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol 43:211–216
Reyes-Chilpa R, Jimenez-Estrada M, Estrada-Muñiz E (1997) Antifungal Xanthones from Calophyllum brasiliensis Heartwood. J Chem Ecol 23:1901–1911
Mejri L, Hassouna M (2016) Characterization and selection of Lactobacillus plantarum. Appl Biol Chem 59:533–542
Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261
Lee CK, Jang MY, Park HR, Choo GC, Cho HS, Park SB, Oh KC, An JB, Kim BG (2016) Cloning and characterization of xylanase in cellulolytic Bacillus sp. JMY1 isolated from forest soil. Appl Biol Chem 59:415–423
Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:4885–4890
Bae Y, Kim H, Park C (1990) An improved method for rapid screening and analysis of root colonizing ability of biocontrol agent. Kor J Plant Pathol 6:325–332
Kim KD, Nemec S, Musson G (1997) Control of Phytophthora root and crown rot of bell pepper with composts and soil amendments in the greenhouse. Appl Soil Ecol 5:169–179
Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729
Gu G, Wang N, Chaney N, Smith L, Lu SE (2009) AmbR1 is a key transcriptional regulator for production of antifungal activity of Burkholderia contaminans strain MS14. FEMS Microbiol Lett 297:54–60
Parker WL, Rathnum ML, Seiner V, Trejo WH, Principe PA, Sykes RB (1984) Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia. J Antibiot 37:431–440
Darling P, Chan M, Cox AD, Sokol PA (1998) Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877
Arima K, Imanaka H, Kousaka M, Fukuta A, Tamura G (1964) Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric Biol Chem 28:575–576
Gerth K, Trowitzsch W, Wray V, Höfle G, Irschik H, Reichenbach H (1982) Pyrrolnitrin from Myxococcus fulvus (myxobacterales). J Antibiot 35:1101–1103
Chernin L, Brandis A, Ismailov Z, Chet I (1996) Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 32:208–212
de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180
Gomez-Gomez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7:251–256