Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbas, 2014, Isolation, identification, characterization, and evaluation of cadmium removal capacity of Enterobacter species, J Basic Microb., 54, 1279, 10.1002/jobm.201400157
Alexander, 1991, Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria, Biol. Fert. Soils, 12, 39, 10.1007/BF00369386
Baycu, 2006, Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul, Environ Pollut., 143, 545, 10.1016/j.envpol.2005.10.050
Belimov, 2005, Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.), Soil Biol. Biochem., 37, 241, 10.1016/j.soilbio.2004.07.033
Brosius, 1978, Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli, PNAS, 75, 4801, 10.1073/pnas.75.10.4801
Cain, 1988, A case of septicaemia caused by Agrobacterium radiobacter, J. Infect., 16, 205, 10.1016/S0163-4453(88)94272-7
Cava, 1989, Rhizobium leguminosarum CFN42 genetic regions encoding lipopolysaccharide structures essential for complete nodule development on bean plants, J. Bacteriol., 171, 8, 10.1128/jb.171.1.8-15.1989
Celik, 2005, Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L, Environ. Int., 31, 105, 10.1016/j.envint.2004.07.004
Chen, 2016, Synergistic effects of plant growth-promoting Neorhizobium huautlense T1-17 and immobilizers on the growth and heavy metal accumulation of edible tissues of hot pepper, J. Hazard. Mater., 312, 123, 10.1016/j.jhazmat.2016.03.042
Chun, 1995, A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences, Int. J. Syst. Evol. Microbiol., 45, 240
Dary, 2010, In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria, J. Hazard. Mater., 177, 323, 10.1016/j.jhazmat.2009.12.035
Das, 2014, Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation, J. Hazard. Mater., 272, 112, 10.1016/j.jhazmat.2014.03.012
Deng, 2011, Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China, FEMS Microbiol. Ecol., 76, 463, 10.1111/j.1574-6941.2011.01063.x
Dworkin, 1958, Experiments with some microorganisms which utilize ethane and hydrogen, J. Bacteriol., 75, 592, 10.1128/JB.75.5.592-603.1958
El-Tarabily, 2008, Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes, Plant Soil, 308, 161, 10.1007/s11104-008-9616-2
Elbeltagy, 2001, Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species, Appl. Environ. Microb., 67, 5285, 10.1128/AEM.67.11.5285-5293.2001
Fahraeus, 1957, The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique, Microbiology, 16, 374, 10.1099/00221287-16-2-374
Fan, 2016, Microbial communities in Riparian soils of a settling pond for mine drainage treatment, Water Res., 96, 198, 10.1016/j.watres.2016.03.061
Glass, 1999
Glick, 2003, Phytoremediation: synergistic use of plants and bacteria to clean up the environment, Biotechnol. Adv., 21, 383, 10.1016/S0734-9750(03)00055-7
Glick, 2007, Promotion of plant growth by ACC deaminase-producing soil bacteria, Eur. J. Plant Pathol., 119, 329, 10.1007/s10658-007-9162-4
Govarthanan, 2016, Synergistic effect of chelators and Herbaspirillum sp. GW103 on lead phytoextraction and its induced oxidative stress in Zeamays, Arch. Microbiol., 198, 737, 10.1007/s00203-016-1231-7
Gupta, 2013, Phytoremediation using aromatic plants: a sustainable approach for remediation of heavy metals polluted sites, Environ. Sci. Technol., 47, 10115
Hao, 2012, Genome sequence and mutational analysis of plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing, Appl. Environ. Microbiol., 78, 5384, 10.1128/AEM.01200-12
Hao, 2012, Draft genome sequence of plant growth-promoting rhizobium Mesorhizobium amorphae, isolated from zinc-lead mine tailings, J. Bacteriol., 194, 736, 10.1128/JB.06475-11
Hao, 2014, Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis, Int. J. Phytorem., 16, 179, 10.1080/15226514.2013.773273
Hao, 2015, Copper tolerance mechanisms of Mesorhizobium amorphae and its role in aiding phytostabilization by Robinia pseudoacacia in copper contaminated soil, Environ. Sci. Technol., 49, 2328, 10.1021/es504956a
Hashimoto, 2006, A quantitative evaluation and phylogenetic characterization of oligotrophic denitrifying bacteria harbored in subsurface upland soil using improved culturability, Biol. Fert. Soils, 42, 179, 10.1007/s00374-005-0013-1
Haukka, 1998, Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America, Appl. Environ. Microb., 64, 419, 10.1128/AEM.64.2.419-426.1998
Huang, 2010, Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata, Can. J. Microbiol., 56, 236, 10.1139/W10-005
Kamicker, 1986, Identification of Bradyrhizobium japonicum nodule isolates from Wisconsin soybean farms, Appl. Environ. Microb., 51, 487, 10.1128/AEM.51.3.487-492.1986
Kim, 2012, Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species, Int. J. Syst. Evol. Microb., 62, 716, 10.1099/ijs.0.038075-0
Kuffner, 2008, Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows, Plant Soil, 304, 35, 10.1007/s11104-007-9517-9
Kumar, 1995, Phytoextraction: the use of plants to remove heavy metals from soils, Environ. Sci. Technol., 29, 1232, 10.1021/es00005a014
Laguerre, 2001, Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts, Microbiology, 147, 981, 10.1099/00221287-147-4-981
Lê, 2008, FactoMineR: an R package for multivariate analysis, J. Basic Microb., 25, 1
Li, 2012, Interaction of Cd/Zn hyperaccumulating plant (Sedum alfredii) and rhizosphere bacteria on metal uptake and removal of phenanthrene, J. Hazard. Mater., 209, 421, 10.1016/j.jhazmat.2012.01.055
Li, 2013, A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China, Chemosphere, 93, 1240, 10.1016/j.chemosphere.2013.06.085
Liang, 2009, Heavy metal tolerance and phylogenetic analysis of rhizobia isolated form metal tailings in northwestern China, J. Agro-Environ. Sci., 28, 1120
Lodewyckx, 2001, The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant, Int. J. Phytorem., 3, 173, 10.1080/15226510108500055
Ma, 2011, Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake, J. Hazard. Mater., 195, 230, 10.1016/j.jhazmat.2011.08.034
Nautiyal, 1999, An efficient microbiological growth medium for screening phosphate solubilizing microorganisms, FEMS Microbiol. Lett., 170, 265, 10.1111/j.1574-6968.1999.tb13383.x
Onyancha, 2008, Studies of chromium removal from tannery wastewaters by algae biosorbents, spirogyra condensata and rhizoclonium hieroglyphicum, J. Hazard. Mater., 158, 605, 10.1016/j.jhazmat.2008.02.043
Pal, 2005, Occurrence of heavy metal‐resistance in microflora from serpentine soil of Andaman, J. Basic Microb., 45, 207, 10.1002/jobm.200410499
Patten, 2002, Role of Pseudomonas putida indoleacetic acid in development of the host plant root system, Appl. Environ. Microb., 68, 3795, 10.1128/AEM.68.8.3795-3801.2002
Penrose, 2003, Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria, Physiol. Plant., 118, 10, 10.1034/j.1399-3054.2003.00086.x
Pérez, 2010, Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters, J. Hazard. Mater., 182, 896, 10.1016/j.jhazmat.2010.07.003
Pilon-Smits, 2005, Phytoremediation, Annu. Rev. Plant Biol., 56, 15, 10.1146/annurev.arplant.56.032604.144214
Płociniczak, 2013, The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L, Chemosphere, 91, 1332, 10.1016/j.chemosphere.2013.03.008
R Development Core Team RDC, 2013
Rajkumar, 2010, Potential of siderophore-producing bacteria for improving heavy metal phytoextraction, Trends Biotechnol., 28, 142, 10.1016/j.tibtech.2009.12.002
Rayment, 1992
Rother, 1983, Nitrogen fixation by white clover (Trifolium repens) in grasslands on soils contaminated with cadmium, lead and zinc, Eur. J. Soil Sci., 34, 127, 10.1111/j.1365-2389.1983.tb00819.x
Roy, 2015, Metal uptake in plants and health risk assessments in metal‐contaminated smelter soils, Land Degrad. Dev., 26, 785, 10.1002/ldr.2237
Sanger, 1977, DNA sequencing with chain-terminating inhibitors, PNAS, 74, 5463, 10.1073/pnas.74.12.5463
Simonian, 2006, Spectrophotometric and colorimetric determination of protein concentration, Curr. Protoc. Mol. Biol., 10.1002/0471142727.mb1001as76
Slater, 2009, Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria, J. Bacteriol., 191, 2501, 10.1128/JB.01779-08
Stoltz, 2002, Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings, Environ. Exp. Bot., 47, 271, 10.1016/S0098-8472(02)00002-3
Tamura, 2013, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 30, 2725, 10.1093/molbev/mst197
Vidal, 2009, Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France, Int. J. Syst. Evol. Microb., 59, 850, 10.1099/ijs.0.003327-0
Vincent, 1971, A manual for the practical study of the root-nodule bacteria, J. Appl. Ecol., 8
Vlachodimos, 2013, Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps, Environ. Monit. Assess., 185, 6921, 10.1007/s10661-013-3075-9
Wang, 2004, A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions, Chemosphere, 55, 811, 10.1016/j.chemosphere.2003.12.003
Welz, 2008
Willems, 1993, Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences, Int. J. Syst. Evol. Microb., 43, 305
Wilson, 1987, Preparation of genomic DNA from bacteria, Curr. Protoc. Mol. Biol.
Xie, 1996, Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid, Curr. Microbiol., 32, 67, 10.1007/s002849900012
Xu, 2014, Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian mountains in China, Syst. Appl. Microbiol., 37, 457, 10.1016/j.syapm.2014.05.009
Yanagi, 1993, Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer, FEMS Microbiol. Lett., 107, 115, 10.1111/j.1574-6968.1993.tb06014.x