Isolation, characterization and molecular three-dimensional structural predictions of metalloprotease from a phytopathogenic fungus, Alternaria solani (Ell. and Mart.) Sor.

Journal of Bioscience and Bioengineering - Tập 122 - Trang 131-139 - 2016
Murugesan Chandrasekaran1,2, Raman Chandrasekar3, Se-Chul Chun1, Muthukrishnan Sathiyabama2
1Department of Bioresource and Food Science, Konkuk University, 120 Neundong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
2Department of Plant Science, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620024, Tamil Nadu, India
3Department of Biochemistry and Molecular Biophysics, Kansas State University, 238 Burt Hall, Manhattan, KS 66506, USA

Tài liệu tham khảo

van der Waals, 2004, Early blight in South Africa: knowledge, attitudes and control practices of potato growers, Potato Res., 46, 27, 10.1007/BF02736100 Chaerani, 2006, Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance, J. Gen. Plant Pathol., 72, 335, 10.1007/s10327-006-0299-3 Leiminger, 2012, Early blight control in potato using disease-orientated threshold values, Plant Dis., 96, 124, 10.1094/PDIS-05-11-0431 Leiminger, 2014, Occurrence of the F129L mutation in Alternaria solani populations in Germany in response to QoI application, and its effect on sensitivity, Plant Pathol., 63, 640, 10.1111/ppa.12120 Valuevaa, 2013, Serine proteinases secreted by two isolates of the fungus Alternaria solani, J. Basic Appl. Sci., 9, 105, 10.6000/1927-5129.2013.09.17 Chandrasekaran, 2014, Serine protease identification (in vitro) and molecular structure predictions (in silico) from a phytopathogenic fungus, Alternaria solani, J. Basic Microbiol., 54, S210, 10.1002/jobm.201300433 Kumar, 1999, Microbial alkaline proteases: from a bioindustrial viewpoint, Biotechnol. Adv., 17, 561, 10.1016/S0734-9750(99)00027-0 Mótyán, 2013, Research applications of proteolytic enzymes in molecular biology, Biomolecules, 3, 923, 10.3390/biom3040923 Onifade, 1998, A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources, Bioresour. Technol., 66, 1, 10.1016/S0960-8524(98)00033-9 Sundararajan, 2011, Alkaline protease from Bacillus cereus VITSN04: potential application as a dehairing agent, J. Biosci. Bioeng., 111, 128, 10.1016/j.jbiosc.2010.09.009 Brandelli, 2010, Biochemical feature of microbial keratinases and their production and applications, Appl. Microbiol. Biotechnol., 85, 1735, 10.1007/s00253-009-2398-5 Gupta, 2013, Revisiting microbial keratinases: next generation proteases for sustainable biotechnology, Crit. Rev. Biotechnol., 33, 1, 10.3109/07388551.2012.685051 Thys, 2006, Purification and properties of a keratinolytic metalloprotease from Microbacterium sp., J. Appl. Microbiol., 101, 1259, 10.1111/j.1365-2672.2006.03050.x Orbach, 2000, A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta, Plant Cell, 12, 2019, 10.1105/tpc.12.11.2019 Redman, 2002, Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity, Mycol. Res., 106, 1427, 10.1017/S0953756202006883 Kushwaha, 2008, Relevance of keratinophilic fungi, Curr. Sci., 94, 706 Mitsuiki, 2010, Identification of alkaliphilic actinomycetes that produces a PrPSc degrading enzyme, Am. Soc. Microbiol., 60, 349 Gradisar, 2005, Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases, Appl. Environ. Microbiol., 71, 3420, 10.1128/AEM.71.7.3420-3426.2005 Chandrasekaran, 2014, Production, partial purification and characterization of protease from a phytopathogenic fungi Alternaria solani (Ell. and Mart.) Sorauer, J. Basic Microbiol., 54, 763, 10.1002/jobm.201200584 Moreira, 2007, Degradation of keratinous materials by the plant pathogenic fungus, Myrothecium verrucaria, Mycopathologia, 163, 153, 10.1007/s11046-007-0096-3 Ramnani, 2005, Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation, Can. J. Microbiol., 51, 191, 10.1139/w04-123 Sharma, 2010, Substrate specificity characterisation of a thermostable keratinase from Pseudomonas aeruginosa KS-1, Ind. Microbiol. Biotechnol., 37, 785, 10.1007/s10295-010-0723-8 Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Kunitz, 1947, Crystalline soyabean trypsin inhibitor. II. General properties, J. Gen. Physiol., 30, 291, 10.1085/jgp.30.4.291 Folin, 1927, On tyrosine and tryptophan determination in proteins, J. Biol. Chem., 73, 627, 10.1016/S0021-9258(18)84277-6 Yamamura, 2002, Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp., Biochem. Biophys. Res. Commun., 294, 1138, 10.1016/S0006-291X(02)00580-6 Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, 10.1038/227680a0 Heussen, 1980, Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and co-polymerized substrates, Anal. Biochem., 102, 196, 10.1016/0003-2697(80)90338-3 Rani, 2013, Conservation of dark recovery kinetic parameters and structural features in the pseudomonadaceae “short” light, oxygen, voltage (LOV) protein family: implications for the design of LOV-based optogenetic tools, Biochemistry, 52, 4460, 10.1021/bi400311r Barinka, 2008, Structural basis of interactions between human glutamate carboxypeptidase ii and its substrate analogs, J. Mol. Biol., 376, 1438, 10.1016/j.jmb.2007.12.066 Zhang, 2006, Structure of human MRG15 chromo domain and its binding to Lys36-methylated histone H3, Nucleic Acids Res., 34, 6621, 10.1093/nar/gkl989 Eisenberg, 1997, VERIFY3D: assessment of protein models with three-dimensional profiles, Methods Enzymol., 277, 396, 10.1016/S0076-6879(97)77022-8 Suyama, 1997, Comparison of protein structures using 3D profile alignment, J. Mol. Evol., 44, S163, 10.1007/PL00000065 Gundampati, 2012, Molecular docking and dynamics simulations of A. niger RNase from A. niger ATC C26550: for potential prevention of human cancer, J. Mol. Model, 18, 653, 10.1007/s00894-011-1078-4 Willard, 2003, VADAR: a web server for quantitative evaluation of protein structure quality, Nucleic Acids Res., 313, 316 Kim, 2001, Feather-degrading Bacillus species from poultry waste, Process Biochem., 37, 287, 10.1016/S0032-9592(01)00206-0 Farag, 2004, Purification, characterization and immobilization of a keratinase from Aspergillus oryzae, Enzyme Microb. Technol., 34, 85, 10.1016/j.enzmictec.2003.09.002 Böckle, 1995, Characterization of a keratinolytic serine protease from Streptomyces pactum DSM40530, Appl. Environ. Microbiol., 61, 3705, 10.1128/AEM.61.10.3705-3710.1995 Takami, 1999, Reidentification of the keratinase producing facultatively alkaliphilic Bacillus sp. AH-101 as Bacillus halodurans, Extremophiles, 3, 293, 10.1007/s007920050130 Ferreira-Nozawa, 2003, The dermatophyte Trichophyton rubrum secretes an EDTA-sensitive alkaline phosphatase on high-phosphate medium, Braz. J. Microbiol., 34, 161, 10.1590/S1517-83822003000200014 Zaugga, 2008, Trichophyton rubrum secreted and membrane-associated carboxypeptidases, Int. J. Med. Microbiol., 298, 669, 10.1016/j.ijmm.2007.11.005 Habbeche, 2014, Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost, J. Biosci. Bioeng., 117, 413, 10.1016/j.jbiosc.2013.09.006 Mitsuiki, 2004, Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1, Enzyme Microb. Technol., 34, 482, 10.1016/j.enzmictec.2003.12.011 Riffel, 2007, Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. Kr6, Arch. Microbiol. Biotechnol., 128, 693 Chaudhari, 2013, Iron containing keratinolytic metallo-protease produced by Chryseobacterium gleum, Process Biochem., 48, 144, 10.1016/j.procbio.2012.11.009 Smulevitch, 1991, Molecular cloning and primary structure of Thermoactinomyces vulagris carboxypeptidase T: a metalloenzyme endowed with dual substrate specificity, FEBS Lett., 291, 75, 10.1016/0014-5793(91)81107-J Fernández-Álvarez, 2012, Identification of O-mannosylated virulence factors in Ustilago maydis, PLoS Pathog., 8, e1002563, 10.1371/journal.ppat.1002563 Bayes, 2003, Procarboxypeptidase A from the insect pest Helicoverpa armigera and its derived enzyme. Two forms with new functional properties, Eur. J. Biochem., 270, 3026, 10.1046/j.1432-1033.2003.03681.x Gomis-Rüth, 2008, Structure and mechanism of metallocarboxypeptidases, Crit. Rev. Biochem. Mol. Biol., 43, 319, 10.1080/10409230802376375 Gomis-Ruth, 2012, A standard orientation for metallopeptidases, Biochim. Biophys. Acta, 1824, 157, 10.1016/j.bbapap.2011.04.014 Deng, 2006, Predicting calcium-binding sites in proteins-A graph theory and geometry approach, Proteins, 64, 34, 10.1002/prot.20973 Bowman, 2006, Multipurpose MRG domain involved in cell senescence and proliferation exhibits structural homology to a DNA-interacting domain, Structure, 14, 151, 10.1016/j.str.2005.08.019 Ji, 2012, Homology modeling and molecular dynamics simulation studies of a marine alkaline protease, Bioinform. Biol. Insights, 6, 255, 10.4137/BBI.S10663 Laskar, 2012, Modeling and structural analysis of PA clan serine proteases, BMC Res. Notes, 5, 256, 10.1186/1756-0500-5-256 Schomburg, 2002, BRENDA, enzyme data and metabolic information, Nucleic Acids Res., 30, 47, 10.1093/nar/30.1.47