Isolation, characterization and molecular three-dimensional structural predictions of metalloprotease from a phytopathogenic fungus, Alternaria solani (Ell. and Mart.) Sor.
Tài liệu tham khảo
van der Waals, 2004, Early blight in South Africa: knowledge, attitudes and control practices of potato growers, Potato Res., 46, 27, 10.1007/BF02736100
Chaerani, 2006, Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance, J. Gen. Plant Pathol., 72, 335, 10.1007/s10327-006-0299-3
Leiminger, 2012, Early blight control in potato using disease-orientated threshold values, Plant Dis., 96, 124, 10.1094/PDIS-05-11-0431
Leiminger, 2014, Occurrence of the F129L mutation in Alternaria solani populations in Germany in response to QoI application, and its effect on sensitivity, Plant Pathol., 63, 640, 10.1111/ppa.12120
Valuevaa, 2013, Serine proteinases secreted by two isolates of the fungus Alternaria solani, J. Basic Appl. Sci., 9, 105, 10.6000/1927-5129.2013.09.17
Chandrasekaran, 2014, Serine protease identification (in vitro) and molecular structure predictions (in silico) from a phytopathogenic fungus, Alternaria solani, J. Basic Microbiol., 54, S210, 10.1002/jobm.201300433
Kumar, 1999, Microbial alkaline proteases: from a bioindustrial viewpoint, Biotechnol. Adv., 17, 561, 10.1016/S0734-9750(99)00027-0
Mótyán, 2013, Research applications of proteolytic enzymes in molecular biology, Biomolecules, 3, 923, 10.3390/biom3040923
Onifade, 1998, A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources, Bioresour. Technol., 66, 1, 10.1016/S0960-8524(98)00033-9
Sundararajan, 2011, Alkaline protease from Bacillus cereus VITSN04: potential application as a dehairing agent, J. Biosci. Bioeng., 111, 128, 10.1016/j.jbiosc.2010.09.009
Brandelli, 2010, Biochemical feature of microbial keratinases and their production and applications, Appl. Microbiol. Biotechnol., 85, 1735, 10.1007/s00253-009-2398-5
Gupta, 2013, Revisiting microbial keratinases: next generation proteases for sustainable biotechnology, Crit. Rev. Biotechnol., 33, 1, 10.3109/07388551.2012.685051
Thys, 2006, Purification and properties of a keratinolytic metalloprotease from Microbacterium sp., J. Appl. Microbiol., 101, 1259, 10.1111/j.1365-2672.2006.03050.x
Orbach, 2000, A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta, Plant Cell, 12, 2019, 10.1105/tpc.12.11.2019
Redman, 2002, Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity, Mycol. Res., 106, 1427, 10.1017/S0953756202006883
Kushwaha, 2008, Relevance of keratinophilic fungi, Curr. Sci., 94, 706
Mitsuiki, 2010, Identification of alkaliphilic actinomycetes that produces a PrPSc degrading enzyme, Am. Soc. Microbiol., 60, 349
Gradisar, 2005, Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases, Appl. Environ. Microbiol., 71, 3420, 10.1128/AEM.71.7.3420-3426.2005
Chandrasekaran, 2014, Production, partial purification and characterization of protease from a phytopathogenic fungi Alternaria solani (Ell. and Mart.) Sorauer, J. Basic Microbiol., 54, 763, 10.1002/jobm.201200584
Moreira, 2007, Degradation of keratinous materials by the plant pathogenic fungus, Myrothecium verrucaria, Mycopathologia, 163, 153, 10.1007/s11046-007-0096-3
Ramnani, 2005, Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation, Can. J. Microbiol., 51, 191, 10.1139/w04-123
Sharma, 2010, Substrate specificity characterisation of a thermostable keratinase from Pseudomonas aeruginosa KS-1, Ind. Microbiol. Biotechnol., 37, 785, 10.1007/s10295-010-0723-8
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Kunitz, 1947, Crystalline soyabean trypsin inhibitor. II. General properties, J. Gen. Physiol., 30, 291, 10.1085/jgp.30.4.291
Folin, 1927, On tyrosine and tryptophan determination in proteins, J. Biol. Chem., 73, 627, 10.1016/S0021-9258(18)84277-6
Yamamura, 2002, Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp., Biochem. Biophys. Res. Commun., 294, 1138, 10.1016/S0006-291X(02)00580-6
Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, 10.1038/227680a0
Heussen, 1980, Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and co-polymerized substrates, Anal. Biochem., 102, 196, 10.1016/0003-2697(80)90338-3
Rani, 2013, Conservation of dark recovery kinetic parameters and structural features in the pseudomonadaceae “short” light, oxygen, voltage (LOV) protein family: implications for the design of LOV-based optogenetic tools, Biochemistry, 52, 4460, 10.1021/bi400311r
Barinka, 2008, Structural basis of interactions between human glutamate carboxypeptidase ii and its substrate analogs, J. Mol. Biol., 376, 1438, 10.1016/j.jmb.2007.12.066
Zhang, 2006, Structure of human MRG15 chromo domain and its binding to Lys36-methylated histone H3, Nucleic Acids Res., 34, 6621, 10.1093/nar/gkl989
Eisenberg, 1997, VERIFY3D: assessment of protein models with three-dimensional profiles, Methods Enzymol., 277, 396, 10.1016/S0076-6879(97)77022-8
Suyama, 1997, Comparison of protein structures using 3D profile alignment, J. Mol. Evol., 44, S163, 10.1007/PL00000065
Gundampati, 2012, Molecular docking and dynamics simulations of A. niger RNase from A. niger ATC C26550: for potential prevention of human cancer, J. Mol. Model, 18, 653, 10.1007/s00894-011-1078-4
Willard, 2003, VADAR: a web server for quantitative evaluation of protein structure quality, Nucleic Acids Res., 313, 316
Kim, 2001, Feather-degrading Bacillus species from poultry waste, Process Biochem., 37, 287, 10.1016/S0032-9592(01)00206-0
Farag, 2004, Purification, characterization and immobilization of a keratinase from Aspergillus oryzae, Enzyme Microb. Technol., 34, 85, 10.1016/j.enzmictec.2003.09.002
Böckle, 1995, Characterization of a keratinolytic serine protease from Streptomyces pactum DSM40530, Appl. Environ. Microbiol., 61, 3705, 10.1128/AEM.61.10.3705-3710.1995
Takami, 1999, Reidentification of the keratinase producing facultatively alkaliphilic Bacillus sp. AH-101 as Bacillus halodurans, Extremophiles, 3, 293, 10.1007/s007920050130
Ferreira-Nozawa, 2003, The dermatophyte Trichophyton rubrum secretes an EDTA-sensitive alkaline phosphatase on high-phosphate medium, Braz. J. Microbiol., 34, 161, 10.1590/S1517-83822003000200014
Zaugga, 2008, Trichophyton rubrum secreted and membrane-associated carboxypeptidases, Int. J. Med. Microbiol., 298, 669, 10.1016/j.ijmm.2007.11.005
Habbeche, 2014, Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost, J. Biosci. Bioeng., 117, 413, 10.1016/j.jbiosc.2013.09.006
Mitsuiki, 2004, Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1, Enzyme Microb. Technol., 34, 482, 10.1016/j.enzmictec.2003.12.011
Riffel, 2007, Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. Kr6, Arch. Microbiol. Biotechnol., 128, 693
Chaudhari, 2013, Iron containing keratinolytic metallo-protease produced by Chryseobacterium gleum, Process Biochem., 48, 144, 10.1016/j.procbio.2012.11.009
Smulevitch, 1991, Molecular cloning and primary structure of Thermoactinomyces vulagris carboxypeptidase T: a metalloenzyme endowed with dual substrate specificity, FEBS Lett., 291, 75, 10.1016/0014-5793(91)81107-J
Fernández-Álvarez, 2012, Identification of O-mannosylated virulence factors in Ustilago maydis, PLoS Pathog., 8, e1002563, 10.1371/journal.ppat.1002563
Bayes, 2003, Procarboxypeptidase A from the insect pest Helicoverpa armigera and its derived enzyme. Two forms with new functional properties, Eur. J. Biochem., 270, 3026, 10.1046/j.1432-1033.2003.03681.x
Gomis-Rüth, 2008, Structure and mechanism of metallocarboxypeptidases, Crit. Rev. Biochem. Mol. Biol., 43, 319, 10.1080/10409230802376375
Gomis-Ruth, 2012, A standard orientation for metallopeptidases, Biochim. Biophys. Acta, 1824, 157, 10.1016/j.bbapap.2011.04.014
Deng, 2006, Predicting calcium-binding sites in proteins-A graph theory and geometry approach, Proteins, 64, 34, 10.1002/prot.20973
Bowman, 2006, Multipurpose MRG domain involved in cell senescence and proliferation exhibits structural homology to a DNA-interacting domain, Structure, 14, 151, 10.1016/j.str.2005.08.019
Ji, 2012, Homology modeling and molecular dynamics simulation studies of a marine alkaline protease, Bioinform. Biol. Insights, 6, 255, 10.4137/BBI.S10663
Laskar, 2012, Modeling and structural analysis of PA clan serine proteases, BMC Res. Notes, 5, 256, 10.1186/1756-0500-5-256
Schomburg, 2002, BRENDA, enzyme data and metabolic information, Nucleic Acids Res., 30, 47, 10.1093/nar/30.1.47