Isolation and genome sequencing of a novel lytic Pseudoalteromonas phage SL20

Marine Genomics - Tập 71 - Trang 101048 - 2023
Huifang Li1,2,3, Jie Gao1, Shiyun Ma1, Rongda Xiao1, Xing Zhou1, Wanting Feng1, Siyu Zhao1, Jiaqi Luo1, Di Zhang1,4
1Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
2College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
3MNR Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Jiangsu Ocean University, Lianyungang 222005, PR China
4Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, PR China

Tài liệu tham khảo

Bernbom, 2011, Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis independent of bacteriocidal activity, Appl. Environ. Microbiol., 77, 8557, 10.1128/AEM.06038-11 Duhaime, 2011, Ecogenomics and genome landscapes of marine Pseudoalteromonas phage H105/1, ISME J., 5, 107, 10.1038/ismej.2010.94 Gong, 2017, Isolation and complete genome sequence of a novel Pseudoalteromonas phage PH357 from the Yangtze River estuary, Curr. Microbiol., 74, 832, 10.1007/s00284-017-1244-8 Hardies, 2013, Morphology, physiological characteristics, and complete sequence of marine bacteriophage phiRIO-1 infecting Pseudoalteromonas marina, J. Virol., 87, 9189, 10.1128/JVI.01521-13 Holmström, 2002, Antifouling activities expressed by marine surface associated Pseudoalteromonas species, FEMS Microbiol. Ecol., 41, 47, 10.1016/S0168-6496(02)00239-8 Hyman, 2010, Bacteriophage host range and bacterial resistance, Adv. Appl. Microbiol., 70, 217, 10.1016/S0065-2164(10)70007-1 Ivanova, 2003, Ecophysiological variabilities in ectohydrolytic enzyme activities of some Pseudoalteromonas species, P. citrea, P. issachenkonii, and P. nigrifaciens, Curr. Microbiol., 46, 6, 10.1007/s00284-002-3794-6 Kallies, 2017, Complete genome sequence of Pseudoalteromonas phage vB_PspS-H40/1 (formerly H40/1) that infects Pseudoalteromonas sp. strain H40 and is used as biological tracer in hydrological transport studies, Stand. Genomic Sci., 12, 20, 10.1186/s40793-017-0235-5 Kulczyk, 2012, An interaction between DNA polymerase and helicase is essential for the high processivity of the bacteriophage T7 replisome, J. Biol. Chem., 287, 39050, 10.1074/jbc.M112.410647 Liu, 2018, Isolation, characterization and genome sequencing of the novel phage SL25 from the Yellow Sea, China, Mar. Genomics, 37, 31, 10.1016/j.margen.2017.09.008 Männistö, 1999, The complete genome sequence of PM2, the first lipid-containing bacterial virus to be isolated, Virology, 262, 355, 10.1006/viro.1999.9837 Monk, 2010, Bacteriophage applications: where are we now?, Lett. Appl. Microbiol., 51, 363, 10.1111/j.1472-765X.2010.02916.x Nam, 2007, Pseudoalteromonas marina sp. nov., a marine bacterium isolated from tidal flats of the Yellow Sea, and reclassification of Pseudoalteromonas sagamiensis as Algicola sagamiensis comb. nov, Int. J. Syst. Evol. Microbiol., 57, 12, 10.1099/ijs.0.64523-0 Paul, 2005, Marine phage genomics: what have we learned?, Curr. Opin. Biotechnol., 16, 299, 10.1016/j.copbio.2005.03.007 Qian, 2007, Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture, Mar. Biotechnol., 9, 399, 10.1007/s10126-007-9001-9 Skerratt, 2001 Suttle, 2007, Marine viruses_major players in the global ecosystem, Nat. Rev. Microbiol., 5, 801, 10.1038/nrmicro1750 Thomas, 2008, Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment, PLoS One, 3, 10.1371/journal.pone.0003252 Weinbauer, 2004, Are viruses driving microbial diversification and diversity?, Environ. Microbiol., 6, 1, 10.1046/j.1462-2920.2003.00539.x Wichels, 1998, Bacteriophage diversity in the North Sea, Appl. Environ. Microbiol., 64, 4128, 10.1128/AEM.64.11.4128-4133.1998 Zhang, 2011, Helicase-DNA polymerase interaction is critical to initiate leading-strand DNA synthesis, Proc. Natl. Acad. Sci. U. S. A., 108, 9372, 10.1073/pnas.1106678108