Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tách chiết và đặc trưng hóa sáu đoạn cDNA của yếu tố phiên mã sốc nhiệt từ đậu nành
Tóm tắt
Căng thẳng nhiệt trong cây giống đậu nành gây ra sự kích hoạt của các protein yếu tố phiên mã sốc nhiệt (HSFs) đã có sẵn. Sự kích hoạt dẫn đến sự gia tăng hoạt động liên kết DNA, từ đó dẫn đến việc phiên mã các gen sốc nhiệt. Từ một thư viện cDNA của đậu nành, chúng tôi đã tách ra các đoạn cDNA tương ứng với sáu gen HSF. Hai gen HSF được biểu hiện liên tục ở mức phiên mã, trong khi bốn gen còn lại có khả năng kích thích bởi nhiệt. Hai trong số các gen có khả năng kích thích bởi nhiệt cũng phản ứng với căng thẳng cadmium. Phân tích so sánh các trình tự HSF cho thấy sự bảo tồn cao hơn của miền liên kết DNA giữa các HSF cây so với các HSF từ nấm men hoặc các sinh vật nhân thực bậc cao khác. Miền oligomer hóa giả thuyết của HSF thực vật chứa các peptide bảy axit amin không phân cực, đặc trưng cho cấu trúc cuộn xoắn, và dường như tồn tại ở hai biến thể cấu trúc. Các miền carboxy-terminal có kích thước nhỏ hơn và đoạn lặp heptad ở đầu C bị thoái hóa.
Từ khóa
#đậu nành #yếu tố phiên mã sốc nhiệt #cDNA #gen sốc nhiệt #phản ứng căng thẳng cadmiumTài liệu tham khảo
AlberT: Structure of the leucine zipper. Curr Opin Genet Devel 2: 205–210 (1992).
ChenY, BarlevNA, WestergaardO, JakobsenBK: Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity. EMBO J 12: 5007–5018 (1993).
ClosJ, WestwoodJT, BeckerPB, WilsonS, LambertK, WuC: Molecular cloning and expression of hexameric Drosophila heat shock factor subject to negative regulation. Cell 63: 1085–1097 (1990).
CzarneckaE, EdelmanL, SchöfflF, KeyJL: Comparative analysis of physical stress responses in soybean seedlings using cloned heat shock cDNAs (Glycine max). Plant Mol Biol 3: 45–58 (1984).
CzarneckaE, FoxPC, GurleyWB: In vitro interaction of nuclear proteins with the promoter of soybean heat shock gene Gmhsp17.5E. Plant Physiol 94: 935–943 (1990).
CzarneckaE, IngersollJC, GurleyWB: AT-rich promoter elements of soybean heat shock gene Gmhsp17.5E bind two distinct sets of proteins in vitro. Plant Mol Biol 19: 985–1000 (1992).
CzarneckaE, NagaoRT, KeyJL, GurleyWB: Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein from soybean: heavy-metal-induced inhibition of intron processing. Mol Cell Biol 8: 1113–1122 (1988).
Czarnecka-VernerE, BarrosMD, GurleyWB: Regulation of heat shock gene expression. In: BasraAS (eds) Stress-Induced Gene Expression in Plants, pp. 131–161. Hardwood Academic Publishers, Switzerland (1994).
FernandesM, O'BrianT, LisJT: Structure and regulation of heat shock gene promoters. In: MorimotoRI, TissièresA, GeorgopoulosC (eds) The Biology of Heat Shock Proteins and Molecular Chaperones, pp. 375–393. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1994).
FlickKE, GonzalezAJ, HarrisonCJ, NelsonHCM: Yeast heat shock transcription factor contains a flexible linker between the DNA-binding and trimerization domains. J Biol Chem 269: 12475–12481 (1994).
FrankelS, SohnR, LeinwandL: The use of sarcosyl in generating soluble protein after bacterial expression. Proc Natl Acad Sci USA 88: 1192–1196 (1991).
HarrisonCJ, BohmAA, NelsonHCM: Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263: 224–227 (1994).
HuJC, SauerRT: The basic-region leucine-zipper family of DNA binding proteins. In: EcksteinF, LilleyDMJ (eds) Nucleic Acids and Molecular Biology, vol. 6, pp. 82–101. Springer-Verlag, Berlin/Heidelberg (1992).
HübelA, SchöfflF: Arabidopsis heat shock factor: isolation and characterization of the gene and the recombinant protein. Plant Mol Biol 26: 353–362 (1994).
JakobsenBK, PelhamHRB: A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J 10: 369–375 (1991).
JofukuKD, GoldbergRB: Analysis of plant gene structure. In: ShawCH (eds) Plant Molecular Biology: A Practical Approach, pp. 37–66. IRL Press, Eynsham, Oxford, England (1988).
LaemmliUK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).
MorimotoRI, JurivichDA, KroegerPE, MathurSK, MurphySP, NakaiA, SargeK, AbravayaK, SistonenLT: Regulation of heat shock gene transcription by a family of heat shock factors. In: MorimotoRI, TissièresA, GeorgopoulosC (eds) The Biology of Heat Shock Proteins and Molecular Chaperones, pp. 417–455. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1994).
NakaiA, MorimotoRI: Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol 13: 1983–1997 (1993).
PeteranderlR, NelsonHCM: Trimerization of the heat shock transcription factor by a triple-stranded α-helical coiled coil. Biochemistry 31: 12272–12276 (1992).
RabindranSK, GiorgiG, ClosJ, WuC: Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci USA 88: 6906–6910 (1991).
RabindranSK, HarounRI, ClosJ, WisniewskiJ, WuC: Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259: 230–234 (1993).
SangerF, NicklenS, CoulsonAR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).
SargeKD, ZimarinoV, HolmK, WuC, MorimotoRJ: Cloning and characterization of two mouse heat shock factors with inducible and constitutive DNA-binding ability. Genes Devel 5: 1902–1911 (1991).
ScharfK-D, MaternaT, TreuterE, NoverL: Heat stress promoters and transcription factors. In: NoverL (eds) Plant Promoters and Transcription Factors, pp. 121–158. Springer-Verlag, Berlin/Heidelberg (1994).
ScharfK-D, RoseS, ThierfelderJ, NoverL: Two cDNAs for tomato heat stress transcription factors. Plant Physiol 102: 1355–1356 (1993).
ScharfK-D, RoseS, ZottW, SchöfflF, NoverL: Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J 9: 4495–4501 (1990).
SchuetzTJ, GalloGJ, SheldonL, TempstP, KingstonRE: Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc Natl Acad Sci USA 88: 6910–6915 (1991).
SheldonLA, KingstonRE: Hydrophobic coiled-coil domains regulate the subcellular localization of human heat shock factor 2. Genes Devel 7: 1549–1558 (1993).
SistonenL, SargeKD, PhillipsB, AbravayaK, MorimotoRI: Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 12: 4104–4111 (1992).
TreuterE, NoverL, OhmeK, ScharfK-D: Promoter specificity and deletion analysis of three heat stress transcription factors of tomato. Mol Gen Genet 240: 113–125 (1993).
VuisterGW, KimS, WuC, BaxA: NMR evidence for similarities between the DNA-binding regions of Drosophila melanogaster heat shock factor and the helix-turn-helix and HNF-3/forkhead families of transcription factors. Biochemistry 33: 10–16 (1994).
WiederrechtG, SietoD, ParkerCS: Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54: 841–853 (1988).
WuC, ClosJ, GiorgiG, HarounRI, RimS-J, RabindranSK, WestwoodJT, WisniewskiJ, YimG: Structure and regulation of heat shock transcription factor. In: MorimotoRI, TissièresA, GeorgopoulosC (eds) The Biology of Heat Shock Proteins and Molecular Chaperones, pp. 395–416. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1994).