Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India

Arti Sharma1, Kamal Dev1, Anuradha Sourirajan1, Madhu Choudhary2
1Faculty of Applied Sciences and Biotechnology, Shoolini University, Sultanpur, India
2ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, India

Tóm tắt

Soil salinity has been one of the biggest hurdles in achieving better crop yield and quality. Plant growth-promoting rhizobacteria (PGPR) are the symbiotic heterogeneous bacteria that play an important role in the recycling of plant nutrients through phytostimulation and phytoremediation. In this study, bacterial isolates were isolated from salt-polluted soil of Jhajjar and Panipat districts of Haryana, India. The potential salt-tolerant bacteria were screened for their PGPR activities such as phosphate solubilization, hydrogen cyanide (HCN), indole acetic acid (IAA) and ammonia production. The molecular characterization of potent isolates with salt tolerance and PGPR activity was done by 16S rDNA sequencing. Eighteen soil samples from saline soils of Haryana state were screened for salt-tolerant bacteria. The bacterial isolates were analyzed for salt tolerance ranging from 2 to 10%. Thirteen isolates were found salt tolerant at varied salt concentrations. Isolates HB6P2 and HB6J2 showed maximum tolerance to salts at 10% followed by HB4A1, HB4N3 and HB8P1. All the salt-tolerant bacterial isolates showed HCN production with maximum production by HB6J2. Phosphate solubilization was demonstrated by three isolates viz., HB4N3, HB6P2 and HB6J2. IAA production was maximum in HB4A1 (15.89) and HB6P2 (14.01) and least in HB4N3 (8.91). Ammonia production was maximum in HB6P2 (12.3) and least in HB8P1 (6.2). Three isolates HB6J2, HB8P1 and HB4N3 with significant salt tolerance, and PGPR ability were identified through sequencing of amplified 16SrRNA gene and were found to be Bacillus paramycoides, Bacillus amyloliquefaciens and Bacillus pumilus, respectively. The salt-tolerant plant growth-promoting rhizobacteria (PGPR) isolated from saline soil can be used to overcome the detrimental effects of salt stress on plants, with beneficial effects of physiological functions of plants such as growth and yield, and overcome disease resistance. Therefore, application of microbial inoculants to alleviate stresses and enhance yield in plants could be a low cost and environmental friendly option for the management of saline soil for better crop productivity.

Tài liệu tham khảo

Mesa-Marín J, Mateos-Naranjo E, Rodríguez-Llorente ID, Pajuelo E, Redondo-Gómez S (2019) 15 synergic effects of rhizobacteria: increasing use of halophytes in a changing world. Halophytes and climate change: adaptive mechanisms and potential uses, p 240 Arti DK, Choudhary M, Sourirajan A (2020) Salt tolerant bacteria for crop improvement in saline agriculture fields: development, challenges and opportunities. Plant Archives 20:7139–7155 Khan N, Bano A, Rahman MA, Guo J, Kang Z, Babar MA (2019) Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep 9:1–19 Ma Y, Rajkumar M, Oliveira RS, Zhang C, Freitas H (2019) Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater 379:120813 El-Ramady H, Alshaal T, Abdelrahman H, El-Hady O (2019) Future soil issues. In: The soils of Egypt. Springer, Cham, Germany, pp 215–224 Mesa-Marín J et al (2018) PGPR reduce root respiration and oxidative stress enhancing spartina maritima root growth and heavy metal rhizoaccumulation. Front Plant Sci 9:1500 Korres NE, Varanasi VK, Slaton NA, Price AJ, Bararpour T (2019) Effects of salinity on rice and rice weeds: short-and long-term adaptation strategies and weed management. In: Advances in Rice Research for Abiotic Stress Tolerance. Woodhead Publishing: Sawston, UK, pp 159-176 Tully KL, Weissman D, Wyner WJ, Miller J, Jordan T (2019) Soils in transition: saltwater intrusion alters soil chemistry in agricultural fields. Biogeochemistry 142:339–356 Costa SF, Martins D, Agacka-Mołdoch M, Czubacka A, de Sousa AS (2018) Strategies to alleviate salinity stress in plants. In: Salinity Responses and Tolerance in Plants. In: Salinity responses and tolerance in plants. Springer Nature: Berlin/Heidelberg, Germany, pp 307–337 Acuña Rodriguez IS, Hansen H, Gallardo J, Atala C, Molina-Montenegro MA (2019) Antarctic extremophiles: biotechnological alternative to crop productivity in saline soils. Front Bioeng Biotechnol 7:22 Jo S, Pak SH (2019) The use of the freshwater snail Ampullaria tischbeini (Dohrn) as a biological control agent for remediation of salt-affected soil. Arch Agron Soil Sci 65:1677–1687 Gangwar P, Singh R, Trivedi M, Tiwari RK (2020) Sodic soil: management and reclamation strategies. In: Environmental concerns and sustainable development. Springer, Singapore, pp 175–190 Agrawal R, Verma A, Satlewal A (2018) Bioprospecting PGPR microflora by novel immunobased techniques. In: Crop improvement through microbial biotechnology. Oxford: Elsevier, pp 465–478 Kumar A, Verma JP (2019) The role of microbes to improve crop productivity and soil health. In: Ecological wisdom inspired restoration engineering. Springer Nature, Singapore, pp 249–265 Mishra P, Singh PP, Singh SK, Verma H (2019) Sustainable agriculture and benefits of organic farming to special emphasis on PGPR. In: Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology. Elsevier, Woodhead publishing, Sawston, Cambridge, UK, pp 75-87 Kenneth OC, Nwadibe EC, Kalu AU, Unah UV (2018) Plant growth promoting rhizobacteria (PGPR): a novel agent for sustainable food production. Am J Agric Biol Sci 14 : 35-54 Meena VS (2018) Role of rhizospheric microbes in soil. Springer, Heidelberg Germany, Volume 1 Yasmeen T et al (2019) Ameliorative capability of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) against salt stress in plant. In: Plant abiotic stress tolerance. Springer: Cham, Germany, pp 409–448 Zhang S, Fan C, Wang Y, Xia Y, Xiao W, Cui X (2018) Salt-tolerant and plant-growth-promoting bacteria isolated from high-yield paddy soil. Can J Microbiol 64:968–978 Paul B, Mohanta S, Deb B, Nath M (2019) In silico 16s rRNA phylogenetic analysis of extremely tolerant and resistant plant growth promoting rhizobacteria. J Glob Biosci 8:6021–6033 Mousavi SM, Motesharezadeh B, Hosseini HM, Alikhani H, Zolfaghari AA (2018) Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicol Environ Saf 147:206–216 Kadmiri IM, Chaouqui L, Azaroual SE, Sijilmassi B, Yaakoubi K, Wahby I (2018) Phosphate-solubilizing and auxin-producing rhizobacteria promote plant growth under saline conditions. Arab J Sci Eng 43:3403–3415 Bharti N, Barnawal D (2019) Amelioration of salinity stress by PGPR: ACC deaminase and ROS scavenging enzymes activity. In: PGPR amelioration in sustainable agriculture. Elsevier, Woodhead publishing, Sawston, Cambridge, UK,pp 85–106 Yousef NM (2018) Capability of plant growth-promoting rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditions. Eur J Biol Res 8:174–182 Barnawal D, Singh R, Singh RP (2019) Role of plant growth promoting rhizobacteria in drought tolerance: regulating growth hormones and osmolytes. In: PGPR amelioration in sustainable agriculture. Elsevier BV: Amsterdam, The Netherlands, pp 107–128 Li J, Liu M (2019) Biological features and regulatory mechanisms of salt tolerance in plants. J Cell Biochem 120:10914–10920 Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Pvt. Ltd, New Delhi, pp 38–56 Rajput LU, Imran A, Mubeen FA, Hafeez FY (2013) Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak J Bot 45(6):1955–1962 Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphorus solubilizing microorganisms. FEMS Microbiol Lett 170:2017–2021 Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1):192–195 Bakker AW, Schipperes B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomoas spp. - mediated plant growth stimulation. Soil Biol Biochem 19:451–457 Cappuccino JC, Sherman N (1992) Microbiology: a laboratory manual, 3rd edn. Benjamin/cummings Pub. Co., New York, pp 125–179 Rahman M et al (2019) Salinization in large river deltas: drivers, impacts and socio-hydrological feedbacks. Water Security 6:100024 Tyerman SD et al (2019) Energy costs of salinity tolerance in crop plants. New Phytol 221:25–29 Dong Y, Jiang C, Suri MR, Pee D, Meng L, Goldstein RER (2019) Groundwater level changes with a focus on agricultural areas in the mid-Atlantic region of the United States, 2002–2016. Environ Res 171:193–203 Ivushkin K et al (2019) UAV based soil salinity assessment of cropland. Geoderma 338:502–512 Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148 Hayes S et al (2019) Soil salinity limits plant shade avoidance. Curr Biol 29:1669–1676 e1664 Sarkar A et al (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20e32 Zerrouk IZ, Rahmoune B, Khelifi L, Mounir K, Baluska F, Ludwig-Müller J (2019) Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiol Plant 41:91 Mahmood A, Amaya R, Turgay OC, Yaprak AE, Taniguchi T, Kataoka R (2019) High salt tolerant plant growth promoting rhizobacteria from the common ice-plant Mesembryanthemum crystallinum L. Rhizosphere 9:10–17 Ma Y, Freitas H, Vosatka M (2019) Beneficial microbes alleviate climatic stresses in plants. Front Plant Sci 10:595 Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Malik KA (2018) Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome. World J Microbiol Biotechnol 34:136 Shahid SA, Zaman M, Heng L (2018) Introduction to soil salinity, sodicity and diagnostics techniques. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham, Germany, pp 1–42 Noori F, Etesami H, Zarini HN, Khoshkholgh-Sima NA, Salekdeh GH, Alishahi F (2018) Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotoxicol Environ Saf 162:129–138 Banik A, Pandya P, Patel B, Rathod C, Dangar M (2018) Characterization of halotolerant, pigmented, plant growth promoting bacteria of groundnut rhizosphere and its in-vitro evaluation of plant-microbe protocooperation to withstand salinity and metal stress. Sci Total Environ 630:231–242 Komaresofla BR, Alikhani HA, Etesami H, Khoshkholgh-Sima NA (2019) Improved growth and salinity tolerance of the halophyte Salicornia sp. by co-inoculation with endophytic and rhizosphere bacteria. Appl Soil Ecol 138:160–170 Hmaeid N, Wali M, Mahmoud OM-B, Pueyo JJ, Ghnaya T, Abdelly C (2019) Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Appl Soil Ecol 133:104–113 Sultana S, Paul SC, Parveen S, Alam S, Rahman N, Jannat B, Hoque S, Rahman MT, Karim MM (2019) Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress. Can J Microbiol 66: 144-160 Tripathi AK, Verma SC, Ron EZ (2002) Molecular characterization of a salt-tolerant bacterial community in the rice rhizosphere. Res Microbiol 153(9):579–584 Gupta S, Sharma P, Dev K, Srivastava M, Sourirajan A (2015) A diverse group of halophilic bacteria exist in Lunsu, a natural salt water body of Himachal Pradesh, India. SpringerPlus 4:274 Vaidya S, Dev K, Sourirajan A (2018) Distinct osmoadaptation strategies in the strict halophilic and halotolerant bacteria isolated from Lunsu salt water body of North West Himalayas. Curr Microbiol 75:888-895 Gupta S, Sharma P, Dev K, Sourirajan A (2020) Isolation of gene conferring salt tolerance from halophilic bacteria of Lunsu, Himachal Pradesh, India. J Genet Eng Biotechnol 18:57