Isolation and characterization of phage AHP-1 and its combined effect with chloramphenicol to control Aeromonas hydrophila
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9:e1403. https://doi.org/10.7759/cureus.1403
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/IDR.S173867
Miranda CD, Godoy FA, Lee MR (2018) Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front Microbiol 9:1–14. https://doi.org/10.3389/fmicb.2018.01284
Salmond GPC, Fineran PC (2015) A century of the phage: past, present and future. Nat Rev Microbiol 13:777–786. https://doi.org/10.1038/nrmicro3564
Rose T, Verbeken G, De Vos D, Merabishvili M, Vaneechoutte M, Lavigne R, Jennes S, Zizi M et al (2014) Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 4:66–73
King A, Lefkowitz E, Adams M, Carstens E (2012) Virus taxonomy, 1st edn. Elsevier, Amsterdam, pp 39–45
Le TS, Nguyen TH, Vo HP, Doan VC, Nguyen HL, Tran MT, Tran TT, Southgate PC, Kurtboke DI (2018) Protective effects of bacteriophages against Aeromonas hydrophila causing motile Aeromonas septicemia (MAS) in striped catfish. Antibiotics 7(1):16. https://doi.org/10.3390/antibiotics7010016
Citterio B, Biavasco F (2015) Aeromonas hydrophila virulence. Virulence 6:417–418. https://doi.org/10.1080/21505594.2015.1058479
Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI (2012) Emerging Aeromonas species infections and their significance in public health. Sci World J 2012:625023. https://doi.org/10.1100/2012/625023
Chandrarathna HPSU, Nikapitiya C, Dananjaya SHS, Wijerathne CUB, Wimalasena SHMP, Kwun HJ, Heo GJ, Lee J, De Zoysa M (2018) Outcome of co-infection with opportunistic and multidrug resistant Aeromonas hydrophila and A. veronii in zebrafish: identification, characterization, pathogenicity and immune responses. Fish Shellfish Immunol 80:573–581. https://doi.org/10.1016/j.fsi.2018.06.049
Pu W, Guo G, Yang N, Li Q, Yin F, Wang P, Zheng J (2019) Three species of Aeromonas (A. dhakensis, A. hydrophila, and A. jandaei) isolated from freshwater crocodiles (Crocodylus siamensis) with pneumonia and septicemia. Lett Appl Microbiol 68:212–218. https://doi.org/10.1111/lam.13112
Nikapitiya C, Dananjaya SHS, Chandrarathna HPSU, Senevirathne A, De Zoysa M, Lee J (2019) Isolation and characterization of multidrug resistance Aeromonas salmonicida subsp. salmonicida and its infecting novel Phage ASP-1 from Goldfish (Carassius auratus). Indian J Microbiol 59:161–170. https://doi.org/10.1007/s12088-019-00782-5
Pridgeon JW, Klesius PH, Lewbart GA, Daniels HV, Jacob M (2014) Edwardsiella tarda and Aeromonas hydrophila isolated from diseased Southern flounder (Paralichthys lethostigma) are virulent to channel catfish and Nile tilapia. J Coast Life Med 2:337–343. https://doi.org/10.12980/JCLM.2.2014JCLM-2014-0005
Aboyadak IM, Ali NGM, Goda AMAS, Aboelgalagel WH, Salam AME (2016) Molecular detection of Aeromonas hydrophila as the main cause of outbreak in Tilapia farms in Egypt. J Aquac Mar Biol 2:00045. https://doi.org/10.15406/jamb.2015.02.00045
Yang Y, Miao P, Li H, Tan S, Yu H, Yu H (2017) Antibiotic susceptibility and molecular characterization of Aeromonas hydrophila from grass carp. J Food Saf 38:e12393. https://doi.org/10.1111/jfs.12393
Anand T, Vaid RK, Bera BC, Singh J, Barua S, Virmani N, Rajukumar K, Yadav NK, Nagar D, Singh RK, Tripathi BN (2016) Isolation of a lytic bacteriophage against virulent Aeromonas hydrophila from an organized equine farm. J Basic Microbiol 56:432–437. https://doi.org/10.1002/jobm.201500318
Vincent AT, Paquet VE, Bernatchez A, Tremblay DM, Moineau S, Charette SJ (2017) Characterization and diversity of phages infecting Aeromonas salmonicida subsp. salmonicida. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-07401-7
El-Araby DA, Gamal ED, Megahed THM (2016) New approach to use phage therapy against Aeromonas hydrophila induced motile Aeromonas septicemia in Nile Tilapia. J Mar Sci Res Dev 6:6–11. https://doi.org/10.4172/2155-9910.1000194
Easwaran M, Dananjaya SHS, Park SC, De Zoysa M, Shin HJ (2016) Characterization of bacteriophage pAh-1 and its protective effects on experimental infection of Aeromonas hydrophila in Zebrafish (Danio rerio). J Fish Dis 40:841–846. https://doi.org/10.1111/jfd.12536
Lindberg HM, McKean KA, Wang IN (2014) Phage fitness may help predict phage therapy efficacy. Bacteriophage 4:e964081. https://doi.org/10.4161/21597073.2014.964081
Rakhuba DV, Kolomiets EI, Szwajcer Dey E, Novik GI (2010) Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol 59:145–155. https://doi.org/10.1016/j.micres.2015.01.008.1.94
Gatedee J, Muangman S, Pumirat P, Mahakunkijcharoen Y, Prasertsincharoen N, Kritsiriwuthinan K (2017) Isolation and biological characterization of bacteriophages which infect Aeromonas hydrophila. J Appl Anim Sci 10:9–18
Papich MG (2016). Saunders handbook of veterinary drugs. 4th edn. Saunders, pp.148-150.
Chaudhry WN, Concepcion-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR (2017) Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS ONE 12:1–16. https://doi.org/10.1371/journal.pone.0168615
Krut O, Bekeredjian-Ding I (2018) Contribution of the immune response to phage therapy. J Immunol 200:3037–3044. https://doi.org/10.4049/jimmunol.1701745
Eriksson F, Tsagozis P, Lundberg K, Parsa R, Mangsbo SM, Persson MAA, Harris RA, Pisa P (2009) Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J Immunol 182:3105–3111. https://doi.org/10.4049/jimmunol.0800224
Yun S, Jun JW, Giri SS, Kim HJ, Chi C, Kim SG, Kim SW, Kang JW, Han SJ, Kwon J, Oh WT, Park SC (2019) Immunostimulation of Cyprinus carpio using phage lysate of Aeromonas hydrophila. Fish Shellfish Immunol 86:680–687. https://doi.org/10.1016/j.fsi.2018.11.076
Weber-Dąbrowska B, Zimecki M, Mulczyk M (2000) Effective phage therapy is associated with normalization of cytokine production by blood cell cultures. Arch Immunol Ther Exp 48:31–37