Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction

Energy and Environmental Science - Tập 11 Số 4 - Trang 893-903
Kun Jiang1,2,3, Samira Siahrostami4,5,6,7, Tingting Zheng1,8,9,3, Yongfeng Hu10,11,12,13, Sooyeon Hwang14,15,16,17, Eli Stavitski14,18,16,17, Yande Peng1,19,20,3, James J. Dynes10,11,12,13, Mehash Gangisetty1,2,3, Dong Su14,15,16,17, Klaus Attenkofer14,18,16,17, Haotian Wang1,2,3
1Cambridge
2Harvard University
3Rowland Institute, Harvard University, Cambridge, MA 02142, USA
4Department of Chemical Engineering
5SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
6Stanford
7Stanford University
8Hefei National Laboratory for Physical Sciences at the Microscale
9Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
10Canada
11Canadian Light Source Inc., University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK, Canada
12Saskatoon
13University of Saskatchewan
14Brookhaven National Laboratory
15Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
16New York 11973
17Upton
18National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
19Department of Chemistry
20Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

Tóm tắt

High-performance electrocatalytic CO2 reduction to CO using Ni single-atom catalyst in an anion membrane electrode assembly.

Từ khóa


Tài liệu tham khảo

Lewis, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103

Appel, 2013, Chem. Rev., 113, 6621, 10.1021/cr300463y

Costentin, 2013, Chem. Soc. Rev., 42, 2423, 10.1039/C2CS35360A

Verma, 2016, ChemSusChem, 9, 1972, 10.1002/cssc.201600394

Zhu, 2016, Adv. Mater., 28, 3423, 10.1002/adma.201504766

Nocera, 2017, Acc. Chem. Res., 50, 616, 10.1021/acs.accounts.6b00615

Chu, 2017, Nat. Mater., 16, 16, 10.1038/nmat4834

Hori, 1994, Electrochim. Acta, 39, 1833, 10.1016/0013-4686(94)85172-7

Chen, 2012, J. Am. Chem. Soc., 134, 19969, 10.1021/ja309317u

Kuhl, 2014, J. Am. Chem. Soc., 136, 14107, 10.1021/ja505791r

Ma, 2016, Angew. Chem., Int. Ed., 55, 9748, 10.1002/anie.201604654

Liu, 2016, Nature, 537, 382, 10.1038/nature19060

Ross, 2017, J. Am. Chem. Soc., 139, 9359, 10.1021/jacs.7b04892

Back, 2015, ACS Catal., 5, 5089, 10.1021/acscatal.5b00462

Zhang, 2014, J. Am. Chem. Soc., 136, 1734, 10.1021/ja4113885

Sharma, 2015, Angew. Chem., Int. Ed., 54, 13701, 10.1002/anie.201506062

Schreier, 2015, Nat. Commun., 6, 7326, 10.1038/ncomms8326

Wu, 2016, Nat. Commun., 7, 13869, 10.1038/ncomms13869

Gao, 2016, Nature, 529, 68, 10.1038/nature16455

Schreier, 2017, Nat. Energy, 2, 17087, 10.1038/nenergy.2017.87

Kim, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 10560, 10.1073/pnas.1711493114

Dai, 2017, Sci. Adv., 3, e1701069, 10.1126/sciadv.1701069

Niu, 2017, Sci. Adv., 3, e1700921, 10.1126/sciadv.1700921

Yang, 2013, Acc. Chem. Res., 46, 1740, 10.1021/ar300361m

Varela, 2015, Angew. Chem., Int. Ed., 54, 10758, 10.1002/anie.201502099

Fei, 2015, Nat. Commun., 6, 8668, 10.1038/ncomms9668

Deng, 2015, Sci. Adv., 1, e1500462, 10.1126/sciadv.1500462

Zhao, 2017, J. Am. Chem. Soc., 139, 8078, 10.1021/jacs.7b02736

Nishihara, 2017, Nat. Commun., 8, 109, 10.1038/s41467-017-00152-z

Jiang, 2017, Chem, 3, 950, 10.1016/j.chempr.2017.09.014

Ju, 2017, Nat. Commun., 8, 944, 10.1038/s41467-017-01035-z

Li, 2017, J. Am. Chem. Soc., 139, 14889, 10.1021/jacs.7b09074

Lopez, 2004, J. Catal., 223, 232, 10.1016/j.jcat.2004.01.001

Valden, 1998, Science, 281, 1647, 10.1126/science.281.5383.1647

Yoon, 2005, Science, 307, 403, 10.1126/science.1104168

Campbell, 2012, Nat. Chem., 4, 597, 10.1038/nchem.1412

Beley, 1986, J. Am. Chem. Soc., 108, 7461, 10.1021/ja00284a003

Wu, 2017, ACS Catal., 7, 5282, 10.1021/acscatal.7b01109

Kuehnel, 2018, Chem. Sci., 10.1039/C7SC04429A

Lin, 2015, Science, 349, 1208, 10.1126/science.aac8343

Kornienko, 2015, J. Am. Chem. Soc., 137, 14129, 10.1021/jacs.5b08212

Zhang, 2017, Nat. Commun., 8, 14675, 10.1038/ncomms14675

Deng, 2016, Nat. Nanotechnol., 11, 218, 10.1038/nnano.2015.340

Krasheninnikov, 2009, Phys. Rev. Lett., 102, 126807, 10.1103/PhysRevLett.102.126807

Su, 2016, Small, 12, 6083, 10.1002/smll.201602158

Lei, 2016, Nat. Commun., 7, 12697, 10.1038/ncomms12697

Rodríguez-Manzo, 2010, ACS Nano, 4, 3422, 10.1021/nn100356q

Hatsukade, 2014, Phys. Chem. Chem. Phys., 16, 13814, 10.1039/C4CP00692E

Jiang, 2017, ACS Nano, 11, 6451, 10.1021/acsnano.7b03029

Rosen, 2011, Science, 334, 643, 10.1126/science.1209786

Jhong, 2013, Adv. Energy Mater., 3, 589, 10.1002/aenm.201200759

Kutz, 2017, Energy Technol., 5, 929, 10.1002/ente.201600636

Lum, 2016, ACS Catal., 6, 202, 10.1021/acscatal.5b02399

Grosvenor, 2006, Surf. Sci., 600, 1771, 10.1016/j.susc.2006.01.041

Shalom, 2015, J. Mater. Chem., 3, 8171, 10.1039/C5TA00078E

Pei, 2012, Carbon, 50, 3210, 10.1016/j.carbon.2011.11.010

Lee, 2009, Chem. Mater., 21, 3905, 10.1021/cm901554p

Shi, 2014, Phys. Chem. Chem. Phys., 16, 4720, 10.1039/c3cp54822h

Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

P. Sabatier , La catalyse en chimie organique , Librairie Polytechnique , Paris et Liège , 1920

Jiang, 2018, Nat. Catal., 1, 111, 10.1038/s41929-017-0009-x

Nørskov, 2004, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j

Peterson, 2010, Energy Environ. Sci., 3, 1311, 10.1039/c0ee00071j