Isogonal deformation of discrete plane curves and discrete Burgers hierarchy

Kenji Kajiwara1, Toshinobu Kuroda2, Nozomu Matsuura3
1Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
2Uwajima South Secondary School, 5-1 Bunkyocho, Ehime, 798-0066, Uwajima, Japan
3Department of Applied Mathematics, Fukuoka University, Nanakuma 8-19-1, Fukuoka, 814-0180, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bobenko, AI, Suris, YB: Discrete Differential Geometry. American Mathematical Society, Prividence, RI (2008).

Choodnovsky, DV, Choodnovsky, GV: Pole expansions of nonlinear partial differential equations. Nuovo Cimento. 40B, 339–353 (1977).

Chou, K-S, Qu, C-Z: Integrable equations arising from motions of plane curves. Phys. D. 162, 9–33 (2002).

Chou, K-S, Qu, C-Z: Integrable equations arising from motions of plane curves. II. J. Nonlinear Sci. 13, 487–517 (2003).

Chou, K-S, Qu, C-Z: Motions of curves in similarity geometries and Burgers-mKdV hierarchies. Chaos, Solitons and Fractals. 19, 47–53 (2003).

Doliwa, A, Santini, PM: An elementary geometric characterization of the integrable motions of a curve. Phys. Lett. A185, 373–384 (1994).

Doliwa, A, Santini, PM: Integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy. J. Math. Phys. 36, 1259–1273 (1995).

Doliwa, A, Santini, PM: Geometry of discrete curves and lattices and integrable difference equations. Discrete Integrable Geometry and Physics(Bobenko, A, Seiler, R, eds.)Clarendon Press, Oxford (1999).

Feng, BF, Inoguchi, J, Kajiwara, K, Maruno, K, Ohta, Y: Discrete integral systems and hodograph transformations arising from motions of discrete plane curves. J. Phys. A: Math. Theor. 44, 395201(19 pages) (2011).

Feng, BF, Inoguchi, J, Kajiwara, K, Maruno, K, Ohta, Y: Integrable discretizations of the Dym equation. Front. Math. China. 8, 1017–1029 (2013).

Feng, BF, Maruno, K, Ohta, Y: Integrable discretizations of the short pulse equation. J. Phys. A: Math. Theor. 43, 085203(14 pages) (2010).

Feng, BF, Maruno, K, Ohta, Y: A self-adaptive moving mesh method for the Camassa-Holm equation. J. Comput. Appl. Math. 235, 229–243 (2010).

Feng, BF, Maruno, K, Ohta, Y: Integrable discretizations for the short-wave model of the Camassa-Holm equation. J. Phys. A: Math. Theor. 43, 265202(14 pages) (2010).

Feng, BF, Maruno, K, Ohta, Y: Self-adaptive moving mesh schemes for short pulse type equations and their Lax pairs. Pac. J. Math. Ind. 6, 8 (2014).

Fujioka, A, Kurose, T: Motions of curves in the complex hyperbola and the Burgers hierarchy. Osaka. J. Math. 45, 1057–1065 (2008).

Hisakado, M, Nakayama, K, Wadati, M: Motion of discrete curves in the plane. J. Phys. Soc. Jpn. 64, 2390–2393 (1995).

Hisakado, M, Wadati, M: Moving discrete curve and geometric phase. Phys. Lett. A214, 252–258 (1996).

Hoffmann, T: Discrete Hashimoto surfaces and a doubly discrete smoke-ring flow. Discrete Differential Geometry(Bobenko, AI, Schröder, P, Sullivan, JM, Ziegler, GM, eds.)Oberwolfach Seminars Vol.39 Birkhäuser, Basel, 95–115 (2008).

Hoffmann, T, Kutz, N: Discrete curves in $\mathbb {C}P^{1}$ and the Toda lattice. Stud. Appl. Math. 113, 31–55 (2004).

Hopf, E: The partial differential equation u t +u u x =μ u xx . Comm. Pure Appl. Math. 3, 201–230 (1950).

Inoguchi, J: Attractive plane curves in differential geometry. MI Lecture Note. 64, 121–124 (2015). Kyushu University.

Inoguchi, J, Kajiwara, K, Matsuura, N, Ohta, Y: Motion and Bäcklund transformations of discrete plane curves. Kyushu J. Math. 66, 303–324 (2012).

Inoguchi, J, Kajiwara, K, Matsuura, N, Ohta, Y: Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves. J. Phys. A: Math. Theor. 45, 045206 (2012).

Inoguchi, J, Kajiwara, K, Matsuura, N, Ohta, Y: Discrete mKdV and discrete sine-Gordon flows on discrete space curves. J. Phys. A: Math. Theor. 47, 235202(26 pages) (2014).

Matsuura, N: Discrete KdV and discrete modified KdV equations arising from motions of planar discrete curves. Int. Math. Res. Not. 2012, 1681–1698 (2012).

Nakayama, K: Elementary vortex filament model of the discrete nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 76, 074003 (2007).

Nakayama, K, Segur, H, Wadati, M: Integrability and the motions of curves. Phys. Rev. Lett. 69, 2603–2606 (1992).

Nishinari, K: A discrete model of an extensible string in three-dimensional space. J. Appl. Mech. 66, 695–701 (1999).

Pinkall, U, Springborn, B, Weißmann, S: A new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow. J. Phys. A: Math. Theor. 40, 12563–12576 (2007).

Rogers, C, Schief, WK: Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory Cambridge University Press, Cambridge (2002).

Sato, M, Shimizu, Y: Log-aesthetic curves and Riccati equations from the viewpoint of similarity geometry. JSIAM Lett. 7, 21–24 (2015).