Isogeometric collocation using analysis-suitable T-splines of arbitrary degree
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hughes, 2005, Isogeometric analysis CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
Cottrell, 2009
Elguedj, 2008, B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Engrg., 197, 2732, 10.1016/j.cma.2008.01.012
Caseiro, 2015, Assumed natural strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures, Comput. Methods Appl. Mech. Engrg., 284, 861, 10.1016/j.cma.2014.10.037
Dhote, 2013, Isogeometric analysis of a dynamic thermo-mechanical phase-field model applied to shape memory alloys, Comput. Mech., 53, 1235, 10.1007/s00466-013-0966-0
Auricchio, 2015, Innovative and efficient stent flexibility simulations based on isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 295, 347, 10.1016/j.cma.2015.07.011
Hughes, 2014, Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Engrg., 272, 290, 10.1016/j.cma.2013.11.012
Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027
Greco, 2013, B-spline interpolation of Kirchhoff-Love space rods, Comput. Methods Appl. Mech. Engrg., 256, 251, 10.1016/j.cma.2012.11.017
Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173, 10.1016/j.cma.2007.07.016
Liu, 2013, Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations, J. Comput. Phys., 248, 47, 10.1016/j.jcp.2013.04.005
Gomez, 2010, Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations, Comput. Methods Appl. Mech. Engrg., 199, 1828, 10.1016/j.cma.2010.02.010
Bazilevs, 2008, Isogeometric fluid–structure interaction: Theory, algorithms, and computations, Comput. Mech., 43, 3, 10.1007/s00466-008-0315-x
Bazilevs, 2011, 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades, Internat. J. Numer. Methods Fluids, 65, 236, 10.1002/fld.2454
Casquero, 2015, A NURBS-based immersed methodology for fluid–structure interaction, Comput. Methods Appl. Mech. Engrg., 284, 943, 10.1016/j.cma.2014.10.055
Kamensky, 2015, An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg., 284, 1005, 10.1016/j.cma.2014.10.040
Bueno, 2015, Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion, Comput. Mech., 55, 1105, 10.1007/s00466-014-1098-x
Gomez, 2008, Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333, 10.1016/j.cma.2008.05.003
Gomez, 2013, Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium, J. Comput. Phys., 238, 217, 10.1016/j.jcp.2012.12.018
Vilanova, 2013, Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis, Comput. Mech., 53, 449, 10.1007/s00466-013-0958-0
Kiendl, 2009, Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 3902, 10.1016/j.cma.2009.08.013
Kiendl, 2015, Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials, Comput. Methods Appl. Mech. Engrg., 291, 280, 10.1016/j.cma.2015.03.010
Adam, 2015, Selective and reduced numerical integrations for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 284, 732, 10.1016/j.cma.2014.11.001
Auricchio, 2010, Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 2075, 10.1142/S0218202510004878
Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249, 2, 10.1016/j.cma.2012.03.026
Schillinger, 2013, Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170, 10.1016/j.cma.2013.07.017
Gomez, 2014, Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, J. Comput. Phys., 262, 153, 10.1016/j.jcp.2013.12.044
De~Lorenzis, 2015, Isogeometric collocation: Neumann boundary conditions and contact, Comput. Methods Appl. Mech. Engrg., 284, 21, 10.1016/j.cma.2014.06.037
Kruse, 2015, Isogeometric collocation for large deformation elasticity and frictional contact problems, Comput. Methods Appl. Mech. Engrg., 296, 73, 10.1016/j.cma.2015.07.022
Reali, 2015, An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates, Comput. Methods Appl. Mech. Engrg., 284, 623, 10.1016/j.cma.2014.10.027
Beirão~da Veiga, 2012, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241–244, 38, 10.1016/j.cma.2012.05.020
Auricchio, 2013, Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Engrg., 263, 113, 10.1016/j.cma.2013.03.009
Kiendl, 2015, Isogeometric collocation methods for the Reissner–Mindlin plate problem, Comput. Methods Appl. Mech. Engrg., 284, 489, 10.1016/j.cma.2014.09.011
Kiendl, 2015, Single-variable formulations and isogeometric discretizations for shear deformable beams, Comput. Methods Appl. Mech. Engrg., 284, 988, 10.1016/j.cma.2014.11.011
Manni, 2015, Isogeometric collocation methods with generalized B-splines, Comput. Math. Appl., 70, 1659, 10.1016/j.camwa.2015.03.027
Sederberg, 2003, Knot intervals and multi-degree splines, Comput. Aided Geom. Design, 20, 455, 10.1016/S0167-8396(03)00096-7
Sederberg, 2004, T-spline simplification and local refinement, vol.~23, 276
Bazilevs, 2010, Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229, 10.1016/j.cma.2009.02.036
Li, 2012, On linear independence of T-spline blending functions, Comput. Aided Geom. Design, 29, 63, 10.1016/j.cagd.2011.08.005
Beirão~da Veiga, 2013, Analysis suitable T-splines of arbitrary degree: Definition, linear independence, and approximation properties, Math. Models Methods Appl. Sci., 23, 1979, 10.1142/S0218202513500231
Beirão~da Veiga, 2012, Analysis-suitable T-splines are dual-compatible, Comput. Methods Appl. Mech. Engrg., 249, 42, 10.1016/j.cma.2012.02.025
Scott, 2012, Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213–216, 206, 10.1016/j.cma.2011.11.022
Zhang, 2012, Solid T-spline construction from boundary representations for genus-zero geometry, Comput. Methods Appl. Mech. Engrg., 249–252, 185, 10.1016/j.cma.2012.01.014
Zhang, 2013, Conformal solid T-spline construction from boundary T-spline representations, Comput. Mech., 51, 1051, 10.1007/s00466-012-0787-6
Wang, 2013, Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology, Comput.-Aided Des., 45, 351, 10.1016/j.cad.2012.10.018
Liu, 2014, Volumetric T-spline construction using boolean operations, Eng. Comput., 30, 425, 10.1007/s00366-013-0346-6
Liu, 2015, Feature-preserving T-mesh construction using skeleton-based polycubes, Comput.-Aided Des., 58, 162, 10.1016/j.cad.2014.08.020
Liu, 2015, Weighted T-splines with application in reparameterizing trimmed NURBS surfaces, Comput. Methods Appl. Mech. Engrg., 295, 108, 10.1016/j.cma.2015.06.020
Wang, 2011, Converting an unstructured quadrilateral mesh to a standard T-spline surface, Comput. Mech., 48, 477, 10.1007/s00466-011-0598-1
Borden, 2012, A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217–220, 77, 10.1016/j.cma.2012.01.008
Bazilevs, 2012, Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput. Methods Appl. Mech. Engrg., 249–252, 28, 10.1016/j.cma.2012.03.028
Casquero, 2015, A hybrid variational-collocation immersed method for fluid–structure interaction using unstructured T-splines, Internat. J. Numer. Methods Engrg.
Verhoosel, 2011, An isogeometric approach to cohesive zone modeling, Internat. J. Numer. Methods Engrg., 87, 336, 10.1002/nme.3061
Verhoosel, 2011, An isogeometric analysis approach to gradient damage models, Internat. J. Numer. Methods Engrg., 86, 115, 10.1002/nme.3150
Dimitri, 2014, Isogeometric large deformation frictionless contact using T-splines, Comput. Methods Appl. Mech. Engrg., 269, 394, 10.1016/j.cma.2013.11.002
Simpson, 2014, Acoustic isogeometric boundary element analysis, Comput. Methods Appl. Mech. Engrg., 269, 265, 10.1016/j.cma.2013.10.026
Buffa, 2014, Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations, J. Comput. Phys., 257, 1291, 10.1016/j.jcp.2013.08.015
Hsu, 2015, Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput. Mech., 55, 1211, 10.1007/s00466-015-1166-x
H. Casquero, L. Lei, Y. Zhang, A. Reali, J. Kiendl, H. Gomez, Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells, submitted for publication.
Finnigan, 2008
Borden, 2011, Isogeometric finite element data structures based on Bézier extraction of NURBS, Internat. J. Numer. Methods Engrg., 87, 15, 10.1002/nme.2968
Scott, 2011, Isogeometric finite element data structures based on Bézier extraction of T-splines, Internat. J. Numer. Methods Engrg., 88, 126, 10.1002/nme.3167
L. Lei, H. Casquero, H. Gomez, J. Zhang, Hybrid-degree weighted T-splines and their application in isogeometric analysis, submitted for publication.
Scott, 2013, Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197, 10.1016/j.cma.2012.11.001
L. Liu, Y. Zhang, X. Wei, Handling extraordinary nodes with weighted T-spline basis functions, in: 24th International Meshing Roundtable, 2015, in press.
T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.
S. Balay, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, H. Zhang, PETSc Web page, http://www.mcs.anl.gov/petsc, 2014.
Balay, 2013
Brooks, 1982, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199, 10.1016/0045-7825(82)90071-8
Franca, 1992, Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 95, 253, 10.1016/0045-7825(92)90143-8
Gomez, 2010, A hyperbolic theory for advection-diffusion problems: Mathematical foundations and numerical modeling, Arch. Comput. Methods Eng., 17, 191, 10.1007/s11831-010-9042-5