Các Hình Thức Mô Đun Vi Phân Tương Đương Isogeny và Không Gian Các Đường Elip Đến Isogeny
Tóm tắt
Từ khóa
Tài liệu tham khảo
Berthelot, P. and Ogus, A.: F-isocrystals and De Rham cohomology I, Invent. Math. 72 (1983), 159–199.
Buium, A.: Differential characters of Abelian varieties over p-adic fields, Invent. Math. 122 (1995), 309–340.
Buium, A.: Geometry of p-jets, Duke J. Math. 82(2) (1996), 349–367.
Buium, A.: Differential characters and characteristic polynomial of Frobenius, J. reine angew. Math. 485 (1997), 209–219.
Buium, A.: Differential modular forms, J. reine angew. Math. 520 (2000), 95–167.
Buium, A.: Geometry of Fermat adeles, Preprint.
Diamond, F. and Im, J.: Modular forms and modular curves, In: Seminar on Fermat's Last Theorem, CMS Conf.Proc. 17, Amer.Math.Soc, Providence, 1995, pp.39–133.
Hurlburt, C.: Isogeny covariant differential modular forms modulo p, Compositio Math. 128 (2001), 17–34.
Katz, N.: p-adic properties of modular schemes and modular forms, In: Lecture Notes in Math.350, Springer, New York, 1973, pp.69–190.
Katz, N.: Travaux de Dwork, In: Expose 409, Sem. Bourbaki 1971/72, Lecture Notes in Math.317, Springer, New York, 1973, pp.167–200.
Lang, S.: Introduction to Modular Forms, Springer, New York 1995.
Mazur, B. and Messing, W.: Universal Extensions and one Dimensional Crystalline Cohomology, Lecture. Notes in Math. 370, Springer, New York, 1974.
Messing, W.: The Crystals Associated to Barsotti-Tate Groups: with Applications to Abelian Schemes, Lecture Notes in Math.264, Springer, New York, 1972.
Robert, G.: Congruences entre se´ ries d'Eisenstein, dans le cas supersingulier, Invent. Math. 61 (1980), 103–158.