Is nevtral NEUTRAL? Visual similarity effects in the early phases of written-word recognition
Tóm tắt
For simplicity, contemporary models of written-word recognition and reading have unspecified feature/letter levels—they predict that the visually similar substituted-letter nonword PEQPLE is as effective at activating the word PEOPLE as the visually dissimilar substituted-letter nonword PEYPLE. Previous empirical evidence on the effects of visual similarly across letters during written-word recognition is scarce and nonconclusive. To examine whether visual similarity across letters plays a role early in word processing, we conducted two masked priming lexical decision experiments (stimulus-onset asynchrony = 50 ms). The substituted-letter primes were visually very similar to the target letters (u/v in Experiment 1 and i/j in Experiment 2; e.g., nevtral–NEUTRAL). For comparison purposes, we included an identity prime condition (neutral–NEUTRAL) and a dissimilar-letter prime condition (neztral-NEUTRAL). Results showed that the similar-letter prime condition produced faster word identification times than the dissimilar-letter prime condition. We discuss how models of written-word recognition should be amended to capture visual similarity effects across letters.
Tài liệu tham khảo
Bicknell, K., & Levy, R. (2010). A rational model of eye movement control in reading. In J. Hajič (Ed.), Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (pp. 1168–1178). Uppsala, Sweden: Association for Computational Linguistics. doi:10.1037/e520602012-979
Blais, C., Fiset, D., Jolicoeur, P., Arguin, M., Bub, D. N., & Gosselin, F. (2009). Reading between eye saccades. PLOS ONE, 4(7), e6448. doi:10.1371/journal.pone.0006448
Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117, 713–758. doi:10.1037/a0019738
Duchon, A., Perea, M., Sebastián-Gallés, N., Martí, A., & Carreiras, M. (2013). EsPal: One-stop shopping for Spanish word properties. Behavior Research Methods, 45, 1246–1258. doi:10.3758/s13428-013-0326-1
Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35, 116–124. doi:10.3758/bf03195503
Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A vision of reading. Trends in Cognitive Sciences, 20, 171–179. doi:10.1016/j.tics.2015.12.008
Grainger, J., O’Regan, J. K., Jacobs, A. M., & Segui, J. (1989). On the role of competing word units in visual word recognition: The neighborhood frequency effect. Perception & Psychophysics, 45, 189–195. doi:10.3758/bf03210696
Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior Research Methods, 42, 627–633. doi:10.3758/brm.42.3.627
Kinoshita, S., & Lagoutaris, S. (2010). Priming by numb3r5 does not involve top-down feedback. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1422–1440. doi:10.1037/a0020609
Kinoshita, S., Robidoux, S., Mills, L., & Norris, D. (2013). Visual similarity effects on masked priming. Memory & Cognition, 42, 821–833. doi:10.3758/s13421-013-0388-4
Lien, M.-C., Allen, P., & Martin, N. (2014). Processing visual words with numbers: Electrophysiological evidence for semantic activation. Psychonomic Bulletin and Review, 21, 1056–1066. doi:10.3758/s13423-014-0581-x
Mueller, S. T., & Weidemann, C. T. (2012). Alphabetic letter identification: Effects of perceivability, similarity, and bias. Acta Psychologica, 139, 19–37. doi:10.1016/j.actpsy.2011.09.014
Norris, D. (2006). The Bayesian reader: Explaining word recognition as an optimal Bayesian decision process. Psychological Review, 113, 327–357. doi:10.1037/0033-295x.113.2.327
Norris, D., Kinoshita, S., & van Casteren, M. (2010). A stimulus sampling theory of letter identity and order. Journal of Memory and Language, 62, 254–271. doi:10.1016/j.jml.2009.11.002
Perea, M., Abu Mallouh, R., Mohammed, A., Khalifa, B., & Carreiras, M. (2016). Do diacritical marks play a role at the early stages of word recognition in Arabic? Frontiers in Psychology, 7, 1255. doi:10.3389/fpsyg.2016.01255
Perea, M., Duñabeitia, J. A., & Carreiras, M. (2008). R34D1NG W0RD5 W1TH NUMB3R5. Journal of Experimental Psychology: Human Perception and Performance, 34, 237–241. doi:10.1037/0096-1523.34.1.237
Perea, M., & Panadero, V. (2014). Does viotin activate violin more than viocin? On the use of visual cues during visual-word recognition. Experimental Psychology, 61, 23–29. doi:10.1027/1618-3169/a000223
Rosa, E., Perea, M., & Enneson, P. (2016). The role of letter features in visual-word recognition: Evidence from a delayed segment technique. Acta Psychologica, 169, 133–142. doi:10.1016/j.actpsy.2016.05.016
Rumelhart, D. E., & McClelland, J. L. (1982). An interactive activation model of context effects in letter perception: II. The contextual enhancement effect and some tests and extensions of the model. Psychological Review, 89, 60–94. doi:10.1037/0033-295x.89.1.60
Segui, J., & Grainger, J. (1990). Priming word recognition with orthographic neighbors: Effects of relative prime-target frequency. Journal of Experimental Psychology: Human Perception and Performance, 16, 65–76. doi:10.1037/0096-1523.16.1.65
Simpson, I. C., Mousikou, P., Montoya, J. M., & Defior, S. (2012). A letter visual-similarity matrix for Latin-based alphabets. Behavior Research Methods, 45, 431–439. doi:10.3758/s13428-012-0271-4
Slattery, T. J. (2009). Word misperception, the neighbor frequency effect, and the role of sentence context: Evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance, 35, 1969–1975. doi:10.1037/a0016894
Stevens, M. A., & Brysbaert, M. (2016, January 27). Power in language research. Retrieved from osf.io/d2cye
Wiley, R. W., Wilson, C., & Rapp, B. (2016). The effects of alphabet and expertise on letter perception. Journal of Experimental Psychology: Human Perception and Performance, 42, 1186–1203. doi:10.1037/xhp0000213