Is carrier mobility a limiting factor for charge transfer in TiO2 /Si devices? A study by transient reflectance spectroscopy
Tài liệu tham khảo
Chen, 2012, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution, Chem. Mater., 24, 3659, 10.1021/cm302533s
Fan, 2019, Silicon based photoelectrodes for photoelectrochemical water splitting, Opt. Express, 27, A51, 10.1364/OE.27.000A51
Sun, 2014, Enabling silicon for solar-fuel production, Chem. Rev., 114, 8662, 10.1021/cr300459q
Fu, 2020, Enhanced stability of silicon for photoelectrochemical water oxidation through self-healing enabled by an alkaline protective electrolyte, Energy Environ. Sci., 13, 4132, 10.1039/D0EE02250K
Feng, 2015, Nickel-coated silicon photocathode for water splitting in alkaline electrolytes, Nano Res., 8, 1577, 10.1007/s12274-014-0643-4
Xia, 2015, Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation, Sci. Bull., 60, 1395, 10.1007/s11434-015-0857-1
Bae, 2017, Strategies for stable water splitting via protected photoelectrodes, Chem. Soc. Rev., 46, 1933, 10.1039/C6CS00918B
Choi, 2014, Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution, J. Mater. Chem. A, 2, 2928, 10.1039/c3ta14443g
Hu, 2015, Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators, J. Phys. Chem. C, 119, 24201, 10.1021/acs.jpcc.5b05976
He, 2019, Thin film photoelectrodes for solar water splitting, Chem. Soc. Rev., 48, 2182, 10.1039/C8CS00868J
Oh, 2018, Elucidating the performance and unexpected stability of partially coated water-splitting silicon photoanodes, Energy Environ. Sci., 11, 2590, 10.1039/C8EE00980E
Kohl, 1977, Semiconductor electrodes: XI . Behavior of n- and p-type single crystal semconductors covered with thin films, J. Electrochem. Soc., 124, 225, 10.1149/1.2133270
Khan, 2018, Hierarchical nanostructures of titanium dioxide: Synthesis and applications, IntechOpen
Albero, 2020, Photocatalytic CO2 reduction to C2+ products, ACS Catal., 10, 5734, 10.1021/acscatal.0c00478
Cheng, 2021, Water splitting with a single-atom Cu/TiO2 photocatalyst: Atomistic origin of high efficiency and proposed enhancement by spin selection, JACS Au, 1, 550, 10.1021/jacsau.1c00004
Gautam, 2016, Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles, RSC Adv., 6, 2746, 10.1039/C5RA20861K
Al-Attafi, 2018, The effect of amorphous TiO2 in P25 on dye-sensitized solar cell performance, Chem. Commun., 54, 381, 10.1039/C7CC07559F
Hu, 2016, Atomic layer deposition of TiO2 for a high-efficiency hole-blocking layer in hole-conductor-free perovskite solar cells processed in ambient air, ACS Appl. Mater. Interfaces, 8, 17999, 10.1021/acsami.6b02701
Ali-Löytty, 2019, Diversity of TiO2: Controlling the molecular and electronic structure of atomic-layer-deposited black TiO2, ACS Appl. Mater. Interfaces, 11, 2758, 10.1021/acsami.8b20608
McDonnell, 2013, Controlling the atomic layer deposition of titanium dioxide on silicon: Dependence on surface termination, J. Phys. Chem. C, 117, 20250, 10.1021/jp4060022
Rajaraman, 2020, Black TiO2: A review of its properties and conflicting trends, J. Chem. Eng., 389, 10.1016/j.cej.2019.123918
Khan, 2020, Optimization of photogenerated charge carrier lifetimes in ALD grown TiO2 for photonic applications, Nanomaterials, 10, 1567, 10.3390/nano10081567
Saari, 2013, Low-temperature route to direct amorphous to rutile crystallization of TiO2 thin films grown by atomic layer deposition, J. Phys. Chem. C, 126, 15357, 10.1021/acs.jpcc.2c04905
Saari, 2021, Interface engineering of TiO2 photoelectrode coatings grown by atomic layer deposition on silicon, ACS Omega, 6, 27501, 10.1021/acsomega.1c04478
Fengler, 2020, Charge transfer in c-Si(n++)/TiO2(ALD) at the amorphous/anatase transition: A transient surface photovoltage spectroscopy study, ACS Appl. Mater. Interfaces, 12, 3140, 10.1021/acsami.9b17592
Ros, 2017, Charge transfer characterization of ALD-grown TiO2 protective layers in silicon photocathodes, ACS Appl. Mater. Interfaces, 9, 17932, 10.1021/acsami.7b02996
Perego, 2008, Energy band alignment at TiO2/Si interface with various interlayers, J. Appl. Phys., 103, 10.1063/1.2885109
Santinacci, 2016, Protected light-trapping silicon by a simple structuring process for sunlight-assisted water splitting, ACS Appl. Mater. Interfaces, 8, 24810, 10.1021/acsami.6b07350
Wrana, 2021, Photoluminescence imaging of defects in TiO2: The influence of grain boundaries and doping on charge carrier dynamics, Appl. Surf. Sci., 569, 10.1016/j.apsusc.2021.150909
Wallace, 2014, Grain boundary controlled electron mobility in polycrystalline titanium dioxide, Adv. Mater. Interfaces, 1, 10.1002/admi.201400078
Park, 2014, Diffusion length in nanoporous TiO2 films under above-band-gap illumination, Sci. Bull., 4
Man, 2016, Electronically passivated hole-blocking titanium dioxide/silicon heterojunction for hybrid silicon photovoltaics, Adv. Mater. Interfaces, 3, 10.1002/admi.201600026
Liu, 2021, A novel passivating electron contact for high-performance silicon solar cells by ALD Al-doped TiO2, Sol. Energy, 228, 531, 10.1016/j.solener.2021.09.083
Shen, 2020, Efficient passivation and low resistivity for p+-Si/TiO2 contact by atomic layer deposition, ACS Appl. Energy Mater., 3, 6291, 10.1021/acsaem.0c00378
Pasanen, 2020, Monitoring charge carrier diffusion across a perovskite film with transient absorption spectroscopy, J. Phys. Chem. Lett., 11, 445, 10.1021/acs.jpclett.9b03427
Wilson, 2001, COCOS (corona oxide characterization of semiconductor) non-contact metrology for gate dielectrics, AIP Conf. Proc., 550, 220, 10.1063/1.1354401
Khan, 2021, Comparison of the heat-treatment effect on carrier dynamics in TiO2 thin films deposited by different methods, Phys. Chem. Chem. Phys., 23, 17672, 10.1039/D1CP02716F
Saari, 2022, Tunable Ti3+-mediated charge carrier dynamics of atomic layer deposition-grown amorphous TiO2, J. Phys. Chem. C, 126, 4542, 10.1021/acs.jpcc.1c10919
Palmolahti, 2022, Pinhole-resistant nanocrystalline rutile TiO2 photoelectrode coatings, Acta Mater., 239, 10.1016/j.actamat.2022.118257
Niewelt, 2022, Reassessment of the intrinsic bulk recombination in crystalline silicon, Sol. Energy Mater. Sol. Cells, 235, 10.1016/j.solmat.2021.111467
Pasanen, 2019, Refractive index change dominates the transient absorption response of metal halide perovskite thin films in the near infrared, Phys. Chem. Chem. Phys., 21, 14663, 10.1039/C9CP02291K
Aspnes, 1983, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Phys. Rev. B, 27, 985, 10.1103/PhysRevB.27.985
DeVore, 1951, Refractive indices of rutile and sphalerite, J. Opt. Soc. Amer., 41, 416, 10.1364/JOSA.41.000416
Green, 1995, Optical properties of intrinsic silicon at 300 K, Prog. Photovolt., 3, 189, 10.1002/pip.4670030303
Zaghloul, 2021, Optimization and parametric analysis of a multi-junction high-concentrator PV cell combined with a straight fins heat sink, Energy Convers. Manag., 243, 10.1016/j.enconman.2021.114382
Zubi, 2009, High concentration photovoltaic systems applying III–V cells, Renew. Sustain. Energy Rev., 13, 2645, 10.1016/j.rser.2009.07.002
Gallas, 2002, SiO2–TiO2 Interfaces studied by ellipsometry and X-ray photoemission spectroscopy, J. Appl. Phys., 92, 1922, 10.1063/1.1494843
Liao, 2014, Excellent c-si surface passivation by low-temperature atomic layer deposited titanium oxide, Appl. Phys. Lett., 104, 10.1063/1.4885096
Matsui, 2020, Origin of the tunable carrier selectivity of atomic-layer-deposited TiOx nanolayers in crystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 209, 10.1016/j.solmat.2020.110461