Is carrier mobility a limiting factor for charge transfer in TiO2/Si devices? A study by transient reflectance spectroscopy

Surfaces and Interfaces - Tập 38 - Trang 102871 - 2023
Ramsha Khan1, Hannu P. Pasanen1, Harri Ali-Löytty2, Hussein M. Ayedh3, Jesse Saari2, Ville Vähänissi3, Mika Valden2, Hele Savin3, Nikolai V. Tkachenko1
1Photonic Compounds and Nanomaterials Group, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33700, Finland
2Surface Science Group, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33014, Finland
3Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, 02150, Finland

Tài liệu tham khảo

Chen, 2012, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution, Chem. Mater., 24, 3659, 10.1021/cm302533s Fan, 2019, Silicon based photoelectrodes for photoelectrochemical water splitting, Opt. Express, 27, A51, 10.1364/OE.27.000A51 Sun, 2014, Enabling silicon for solar-fuel production, Chem. Rev., 114, 8662, 10.1021/cr300459q Fu, 2020, Enhanced stability of silicon for photoelectrochemical water oxidation through self-healing enabled by an alkaline protective electrolyte, Energy Environ. Sci., 13, 4132, 10.1039/D0EE02250K Feng, 2015, Nickel-coated silicon photocathode for water splitting in alkaline electrolytes, Nano Res., 8, 1577, 10.1007/s12274-014-0643-4 Xia, 2015, Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation, Sci. Bull., 60, 1395, 10.1007/s11434-015-0857-1 Bae, 2017, Strategies for stable water splitting via protected photoelectrodes, Chem. Soc. Rev., 46, 1933, 10.1039/C6CS00918B Choi, 2014, Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution, J. Mater. Chem. A, 2, 2928, 10.1039/c3ta14443g Hu, 2015, Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators, J. Phys. Chem. C, 119, 24201, 10.1021/acs.jpcc.5b05976 He, 2019, Thin film photoelectrodes for solar water splitting, Chem. Soc. Rev., 48, 2182, 10.1039/C8CS00868J Oh, 2018, Elucidating the performance and unexpected stability of partially coated water-splitting silicon photoanodes, Energy Environ. Sci., 11, 2590, 10.1039/C8EE00980E Kohl, 1977, Semiconductor electrodes: XI . Behavior of n- and p-type single crystal semconductors covered with thin films, J. Electrochem. Soc., 124, 225, 10.1149/1.2133270 Khan, 2018, Hierarchical nanostructures of titanium dioxide: Synthesis and applications, IntechOpen Albero, 2020, Photocatalytic CO2 reduction to C2+ products, ACS Catal., 10, 5734, 10.1021/acscatal.0c00478 Cheng, 2021, Water splitting with a single-atom Cu/TiO2 photocatalyst: Atomistic origin of high efficiency and proposed enhancement by spin selection, JACS Au, 1, 550, 10.1021/jacsau.1c00004 Gautam, 2016, Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles, RSC Adv., 6, 2746, 10.1039/C5RA20861K Al-Attafi, 2018, The effect of amorphous TiO2 in P25 on dye-sensitized solar cell performance, Chem. Commun., 54, 381, 10.1039/C7CC07559F Hu, 2016, Atomic layer deposition of TiO2 for a high-efficiency hole-blocking layer in hole-conductor-free perovskite solar cells processed in ambient air, ACS Appl. Mater. Interfaces, 8, 17999, 10.1021/acsami.6b02701 Ali-Löytty, 2019, Diversity of TiO2: Controlling the molecular and electronic structure of atomic-layer-deposited black TiO2, ACS Appl. Mater. Interfaces, 11, 2758, 10.1021/acsami.8b20608 McDonnell, 2013, Controlling the atomic layer deposition of titanium dioxide on silicon: Dependence on surface termination, J. Phys. Chem. C, 117, 20250, 10.1021/jp4060022 Rajaraman, 2020, Black TiO2: A review of its properties and conflicting trends, J. Chem. Eng., 389, 10.1016/j.cej.2019.123918 Khan, 2020, Optimization of photogenerated charge carrier lifetimes in ALD grown TiO2 for photonic applications, Nanomaterials, 10, 1567, 10.3390/nano10081567 Saari, 2013, Low-temperature route to direct amorphous to rutile crystallization of TiO2 thin films grown by atomic layer deposition, J. Phys. Chem. C, 126, 15357, 10.1021/acs.jpcc.2c04905 Saari, 2021, Interface engineering of TiO2 photoelectrode coatings grown by atomic layer deposition on silicon, ACS Omega, 6, 27501, 10.1021/acsomega.1c04478 Fengler, 2020, Charge transfer in c-Si(n++)/TiO2(ALD) at the amorphous/anatase transition: A transient surface photovoltage spectroscopy study, ACS Appl. Mater. Interfaces, 12, 3140, 10.1021/acsami.9b17592 Ros, 2017, Charge transfer characterization of ALD-grown TiO2 protective layers in silicon photocathodes, ACS Appl. Mater. Interfaces, 9, 17932, 10.1021/acsami.7b02996 Perego, 2008, Energy band alignment at TiO2/Si interface with various interlayers, J. Appl. Phys., 103, 10.1063/1.2885109 Santinacci, 2016, Protected light-trapping silicon by a simple structuring process for sunlight-assisted water splitting, ACS Appl. Mater. Interfaces, 8, 24810, 10.1021/acsami.6b07350 Wrana, 2021, Photoluminescence imaging of defects in TiO2: The influence of grain boundaries and doping on charge carrier dynamics, Appl. Surf. Sci., 569, 10.1016/j.apsusc.2021.150909 Wallace, 2014, Grain boundary controlled electron mobility in polycrystalline titanium dioxide, Adv. Mater. Interfaces, 1, 10.1002/admi.201400078 Park, 2014, Diffusion length in nanoporous TiO2 films under above-band-gap illumination, Sci. Bull., 4 Man, 2016, Electronically passivated hole-blocking titanium dioxide/silicon heterojunction for hybrid silicon photovoltaics, Adv. Mater. Interfaces, 3, 10.1002/admi.201600026 Liu, 2021, A novel passivating electron contact for high-performance silicon solar cells by ALD Al-doped TiO2, Sol. Energy, 228, 531, 10.1016/j.solener.2021.09.083 Shen, 2020, Efficient passivation and low resistivity for p+-Si/TiO2 contact by atomic layer deposition, ACS Appl. Energy Mater., 3, 6291, 10.1021/acsaem.0c00378 Pasanen, 2020, Monitoring charge carrier diffusion across a perovskite film with transient absorption spectroscopy, J. Phys. Chem. Lett., 11, 445, 10.1021/acs.jpclett.9b03427 Wilson, 2001, COCOS (corona oxide characterization of semiconductor) non-contact metrology for gate dielectrics, AIP Conf. Proc., 550, 220, 10.1063/1.1354401 Khan, 2021, Comparison of the heat-treatment effect on carrier dynamics in TiO2 thin films deposited by different methods, Phys. Chem. Chem. Phys., 23, 17672, 10.1039/D1CP02716F Saari, 2022, Tunable Ti3+-mediated charge carrier dynamics of atomic layer deposition-grown amorphous TiO2, J. Phys. Chem. C, 126, 4542, 10.1021/acs.jpcc.1c10919 Palmolahti, 2022, Pinhole-resistant nanocrystalline rutile TiO2 photoelectrode coatings, Acta Mater., 239, 10.1016/j.actamat.2022.118257 Niewelt, 2022, Reassessment of the intrinsic bulk recombination in crystalline silicon, Sol. Energy Mater. Sol. Cells, 235, 10.1016/j.solmat.2021.111467 Pasanen, 2019, Refractive index change dominates the transient absorption response of metal halide perovskite thin films in the near infrared, Phys. Chem. Chem. Phys., 21, 14663, 10.1039/C9CP02291K Aspnes, 1983, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Phys. Rev. B, 27, 985, 10.1103/PhysRevB.27.985 DeVore, 1951, Refractive indices of rutile and sphalerite, J. Opt. Soc. Amer., 41, 416, 10.1364/JOSA.41.000416 Green, 1995, Optical properties of intrinsic silicon at 300 K, Prog. Photovolt., 3, 189, 10.1002/pip.4670030303 Zaghloul, 2021, Optimization and parametric analysis of a multi-junction high-concentrator PV cell combined with a straight fins heat sink, Energy Convers. Manag., 243, 10.1016/j.enconman.2021.114382 Zubi, 2009, High concentration photovoltaic systems applying III–V cells, Renew. Sustain. Energy Rev., 13, 2645, 10.1016/j.rser.2009.07.002 Gallas, 2002, SiO2–TiO2 Interfaces studied by ellipsometry and X-ray photoemission spectroscopy, J. Appl. Phys., 92, 1922, 10.1063/1.1494843 Liao, 2014, Excellent c-si surface passivation by low-temperature atomic layer deposited titanium oxide, Appl. Phys. Lett., 104, 10.1063/1.4885096 Matsui, 2020, Origin of the tunable carrier selectivity of atomic-layer-deposited TiOx nanolayers in crystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 209, 10.1016/j.solmat.2020.110461