Is There a Physical Linkage Between Surface Emissive and Reflective Variables Over Non-Vegetated Surfaces?

Journal of the Indian Society of Remote Sensing - Tập 46 - Trang 591-596 - 2017
Jie Cheng1,2, Shunlin Liang1,2, Aixiu Nie, Qiang Liu3
1State Key Laboratory of Remote Sensing Science, Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China
2Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, China
3College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Tóm tắt

For a satellite sensor with only one or two thermal infrared channels, it is difficult to retrieve the surface emissivity from the received emissive signal. Empirical linear relationship between surface emissivity and red reflectance are already established for deriving emissivity, but the inner physical mechanism remains unclear. The optical constants of various minerals that cover the spectral range from 0.44 to 13.5 μm in conjunction with modern radiative transfer models were used to produce corresponding surface reflectance and emissivity spectra. Compared to the commonly used empirical linear relationship, a more accurate multiple linear relationship between Landsat TM5 emissivity and optical reflectances was derived using the simulated data, which indicated the necessity of replacing the empirical relationship with the new one for improving surface emissivity estimate in the single channel algorithm. The significant multiple linear relationship between broadband emissivity (BBE, 8–13.5 μm) and MODIS spectral albedos was also derived using the same data. This paper demonstrates that there is a physical linkage between surface emissive and reflective variables, and provides a theoretical perspective on estimating surface emissivity for sensors with only one or two thermal infrared channels.

Tài liệu tham khảo

Baldridge, A. M., Hook, S. J., Grove, C. I., & Rivera, G. (2009). The ASTER spectral library version 2.0. Remote Sensing of Environment, 113, 711–715. Cheng, J., & Liang, S. (2013). Estimating global land surface broadband thermal-infrared emissivity from the advanced very high resolution radiometer optical data. International Journal of Digital Earth, 6, 34–49. Cheng, J., & Liang, S. (2014). Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product. Journal of Geophysical Research Atmosphere, 119, 614–634. Cheng, J., Liang, S., Liu, Q., & Li, X. (2011). Temperature and emissivity separation from ground-based MIR hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 49, 1473–1484. Cheng, J., Liang, S., Weng, F., Wang, J., & Li, X. (2010). Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity. IEEE Journal of Selected Topics in Earth Observations and Remote Sensing, 3, 323–336. Cheng, J., Liang, S., Yao, Y., & Zhang, X. (2013). Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation. IEEE Geoscience and Remote Sensing Letters, 10, 401–405. Cheng, J., & Ren, H. (2012). Land-surface temperature and thermal-infrared emissivity. In S. Liang, X. Li, & J. Wang (Eds.), Advanced remote sensing: terrestrial information extraction and applications (pp. 235–271). Cambridge: Academic Press. Cristobal, J., Jimenez-Munoz, J. C., Sobrino, J. A., Ninyerola, M., & Pons, X. (2009). Improvements in land surface temperature retrieval from the landsat series thermal band using water vapor and air temperature. Journal of Geophysical Research. doi:10.1029/2008JD010616. Dong, L. X., Hu, J. Y., Tang, S. H., & Min, M. (2013). Field validation of GLASS land surface broadband emissivity database using pseudo-invariant sand dunes sites in Northern China. International Journal of Digital Earth, 6, 96–112. Garcia-Santos, V., Valor, E., Caselles, V., & Dona, C. (2016). Validation and comparison of two models based on the Mie theory to predict 8–14 um emissivity spectra of mineral surfaces. Journal of Geophysical Research: Solid Earth, 121, 1739. Gillespie, A. (2014). Land surface emissivity. In E. G. Njoku (Ed.), Encyclopedia of Remote Sensing (pp. 303–311). New York: Springer. Gillespie, A. R., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S. J., & Kahle, A. B. (1998). A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113–1126. Hapke, B. (2012). Theory of reflectance and emittance spectroscopy. Cambridge: Cambridge University Press. Jimenez-Munoz, J. C., Cristobal, J., Sobrino, J. A., Soria, G., Ninyerola, M., & Pons, X. (2009). Revision of the single-channel algorithm for land surface temperature retrieval from Landsat Thermal-Infrared data. IEEE Transactions on Geoscience and Remote Sensing, 47, 339–349. Li, X., Strahler, A. H., & Friedl, M. A. (1999). A conceptual model for effective directional emissivity from nonisothermal surfaces. IEEE Transactions on Geoscience and Remote Sensing, 37, 2508–2517. Li, Z., Tang, B., Wu, H., Ren, H., Yan, G., Wan, Z., et al. (2013a). Satellite-derived land surface temperature: Current status and prespectives. Remote Sensing of Environment, 131, 14–37. Li, Z.-L., Wu, H., Wang, N., Qiu, S., Sobrino, J.A., Wan, Z.-M., Tang, B.-H., & Yan, G.-J. (2013a). Land surface emissivity retrieval from satellite data. Internationl Journal of Remote Sensing, 34, 3084–3127. Liang, S. (2001). An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery. IEEE Transactions on Geoscience and Remote Sensing, 39, 264–274. Liang, S., Zhao, X., Liu, S., Yuan, W., Cheng, X., Xiao, Z., et al. (2013). A long-term global land surface satellite (GLASS) data-set for environmental studies. International Journal of Digital Earth, 6, 5–33. Mie, G. (1908). Beitrage zur optik truber medien speziell kolloidaler metrllosungen (Contribution to the optics of turbid media, particulary of colloidal metal solutions). Annual of Physics, 25, 377–445. Mishchenko, M. I., & Macke, A. (1997). Asymmetry parameters of the phase function for isolated and densely packed spherical particles with multiple internal inclusions in the geometric optics limit. Journal of Quantitative Spectroscopy and Radiative Transfer, 57, 767–794. Mishchenko, M. I., Travis, L. D., & Lacis, A. A. (2002). Scattering, Absorption, and Emission of Light by Small Particle. Cambridge: Cambridge University Press. Pitman, K. M., Wolff, M. J., & Clayton, G. C. (2005). Application of modern radiative transfer tools to model laboratory quartz emissivity. Journal of Geophysical Research. doi:10.1029/2005JE002428. Qin, Z., & Karnieli, A. (2001). Mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel–Egype border region. International Journal of Remote Sensing, 22, 3719–3746. Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., et al. (2008). Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46, 316–327. Spitzer, W. G., & Kleinman, D. A. (1961). Infrared lattice bands of quartz. Physical Review, 121, 1324–1335. Tardy, B., Rivalland, V., Huc, M., Hagolle, O., Marcq, S., & Boulet, G. (2016). A software tool for atmospheric correction and surface temperature estimation of Landsat infrared thermal data. Remote Sensing, 8, 696. Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing of Environment, 57, 167–184. Wan, Z., & Li, Z.-L. (1997). A Physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 35, 980–996. Xue, Y., Cai, G., Guan, Y. N., Cracknell, A. P., & Tang, J. (2005). Iterative self-consistent approach for earth surface temperature determination. International Journal of Remote Sensing, 26, 185–192. Zhou, J., Li, J., Zhang, L., Hu, D., & Zhan, W. (2012). Intercomparison of methods for estimating land surface temperature from a Landsat-5 TM image in an arid region with low water vapour in the atmosphere. International Journal of Remote Sensing, 33, 2582–2602.