Irregular surface seismic forward modeling by a body-fitted rotated–staggered-grid finite-difference method
Tóm tắt
Finite-difference (FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid (SSG) with interpolation, nonstaggered grid, rotated staggered grid (RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference (UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.
Tài liệu tham khảo
citation_journal_title=Communications in Computational Physics; citation_title=A Stable Finite Difference Method for the Elastic Wave Equation on Complex Geometries with Free Surfaces; citation_author=D. Appelo, N. A. Petersson; citation_volume=5; citation_issue=1; citation_publication_date=2009; citation_pages=84-107; citation_id=CR1
citation_journal_title=Journal of Computational Physics; citation_title=A family of low dispersive and low dissipative explicit schemes for flow and noise computations; citation_author=C. Bogey, C. Bailly; citation_volume=194; citation_issue=1; citation_publication_date=2004; citation_pages=194-214; citation_doi=10.1016/j.jcp.2003.09.003; citation_id=CR2
citation_journal_title=Geophysics; citation_title=Accuracy of heterogeneous staggered–grid finite–difference modeling of Rayleigh waves; citation_author=T. Bohlen, E. H. Saenger; citation_volume=71; citation_issue=4; citation_publication_date=2006; citation_pages=T109-T115; citation_doi=10.1190/1.2213051; citation_id=CR3
citation_journal_title=Applied Numerical Mathematics; citation_title=Fourth–and sixth–order conservative finite difference approximations of the divergence and gradient; citation_author=J. E. Castillo, J. M. Hyman, M. Shashkov, S. Steinberg; citation_volume=37; citation_issue=1–2; citation_publication_date=2001; citation_pages=171-187; citation_doi=10.1016/S0168-9274(00)00033-7; citation_id=CR4
citation_journal_title=An efficient tool to simulate the seismic response of 2D and 3D geological structures: Bulletin of the Seismological Society of America; citation_title=The spectral element method; citation_author=E. Chaljub, D. Komatitsch, J. P. Vilotte; citation_volume=88; citation_issue=2; citation_publication_date=1998; citation_pages=368-392; citation_id=CR5
citation_journal_title=Chinese Science Bulletin; citation_title=A rotated staggered grid finite–difference with the absorbing boundary condition of a perfectly matched layer; citation_author=H. Chen, X. Wang, H. Zhao; citation_volume=51; citation_issue=19; citation_publication_date=2006; citation_pages=2304-2314; citation_doi=10.1007/s11434-006-2127-8; citation_id=CR6
citation_journal_title=Geophysical Journal International; citation_title=Two–dimensional time–domain finite–difference modeling for viscoelastic seismic wave propagation; citation_author=N. Fan, L. F. Zhao, X. B. Xie, Z. Ge, Z. X. Yao; citation_volume=206; citation_issue=3; citation_publication_date=2016; citation_pages=1539-1551; citation_doi=10.1093/gji/ggw228; citation_id=CR7
citation_journal_title=Stability of long simulation: Geophysics; citation_title=Elastic wave modeling with free surfaces; citation_author=S. Hestholm; citation_volume=68; citation_issue=1; citation_publication_date=2003; citation_pages=314-321; citation_id=CR8
citation_journal_title=Geophysics; citation_title=3–D finite–difference elastic wave modeling including surface topography; citation_author=S. Hestholm, B. Ruud; citation_volume=63; citation_issue=2; citation_publication_date=1998; citation_pages=613-622; citation_doi=10.1190/1.1444360; citation_id=CR9
citation_journal_title=Applied Geophysics; citation_title=Variable–coordinate forward modeling of irregular surface based on dual–variable grid; citation_author=J. P. Huang, Y. M. Qu, Q. Y. Li, Z. C. Li, D. L. Li, C. C. Bu; citation_volume=12; citation_issue=1; citation_publication_date=2015; citation_pages=101-110; citation_doi=10.1007/s11770-014-0476-2; citation_id=CR10
citation_journal_title=Geophysical Journal of the Royal Astronomical Society; citation_title=Introduction to the spectral element method for three–dimensional seismic wave propagation; citation_author=D. Komatitsch, J. Tromp; citation_volume=139; citation_issue=3; citation_publication_date=1999; citation_pages=806-822; citation_doi=10.1046/j.1365-246x.1999.00967.x; citation_id=CR11
citation_journal_title=Bulletin of the Seismological Society of America; citation_title=Three–Dimensional Wave–Field Simulation in Heterogeneous Transversely Isotropic Medium with Irregular Free Surface; citation_author=H. Lan, Z. Zhang; citation_volume=101; citation_issue=3; citation_publication_date=2012; citation_pages=1354-1370; citation_doi=10.1785/0120100194; citation_id=CR12
citation_journal_title=Applied Geophysics; citation_title=Seismic wavefield modeling in media with fluid–filled fractures and surface topography; citation_author=H. Q. Lan, Z. J. Zhang; citation_volume=9; citation_issue=3; citation_publication_date=2012; citation_pages=301-312; citation_doi=10.1007/s11770-012-0341-5; citation_id=CR13
citation_journal_title=Geophysics; citation_title=Fourth–order finite–difference P–SV seismograms; citation_author=A. R. Levander; citation_volume=53; citation_issue=11; citation_publication_date=1988; citation_pages=1425-1436; citation_doi=10.1190/1.1442422; citation_id=CR14
citation_journal_title=Oil Geophysical Prospecting; citation_title=Undulating surface body–fitted grid seismic modeling based on fully staggered–grid mimetic finite difference; citation_author=Q. Y. Li, J. P. Huang, Z. C. Li, N. Li, C. Q. Wang, Y. Y. Zhang; citation_volume=50; citation_issue=4; citation_publication_date=2015; citation_pages=633-642; citation_id=CR15
citation_journal_title=Geophysical Prospecting; citation_title=Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity double dagger; citation_author=V. Lisitsa, D. Vishnevsky; citation_volume=58; citation_issue=4; citation_publication_date=2010; citation_pages=619-635; citation_doi=10.1111/j.1365-2478.2009.00862.x; citation_id=CR16
citation_journal_title=Kobe–JMA Station Site, Japan, Case Study: Geophysical Research Letters; citation_title=Modeling 3D surface topography by finite–difference method; citation_author=A. Pitarka, K. Irikura; citation_volume=23; citation_issue=20; citation_publication_date=1996; citation_pages=2729-2732; citation_id=CR17
citation_journal_title=Journal of Zhejiang University; citation_title=Finitedifference method for seismic wave numerical simulation in presence of topography—In generally orthogonal curvilinear coordinate system; citation_author=L. Qiu, G. Tian, Z. J. Shi, H. L. Shen; citation_volume=46; citation_issue=10; citation_publication_date=2012; citation_pages=1923-1930; citation_id=CR18
citation_journal_title=Geophysics; citation_title=A numerical free–surface condition for elastic/viscoelastic finite–difference modeling in the presence of topography; citation_author=J. O. A. Robertsson; citation_volume=61; citation_issue=6; citation_publication_date=1996; citation_pages=1921-1934; citation_doi=10.1190/1.1444107; citation_id=CR19
citation_journal_title=Geophysical Journal of the Royal Astronomical Society; citation_title=Modelling of rupture propagation using high–order mimetic finite differences; citation_author=O. Rojas, S. Day, J. Castillo, L. A. Dalguer; citation_volume=172; citation_issue=2; citation_publication_date=2008; citation_pages=631-650; citation_doi=10.1111/j.1365-246X.2007.03651.x; citation_id=CR20
citation_journal_title=Computational Geosciences; citation_title=Low dispersive modeling of Rayleigh waves on partly staggered grids; citation_author=O. Rojas, B. Otero, J. E. Castillo, S. M. Day; citation_volume=18; citation_issue=1; citation_publication_date=2014; citation_pages=29-43; citation_doi=10.1007/s10596-013-9380-0; citation_id=CR21
citation_journal_title=Geophysics; citation_title=Finite–difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid; citation_author=E. H. Saenger, T. Bohlen; citation_volume=69; citation_issue=2; citation_publication_date=2004; citation_pages=583-591; citation_doi=10.1190/1.1707078; citation_id=CR22
citation_journal_title=Wave Motion; citation_title=Modeling the propagation of elastic waves using a modified finitedifference grid; citation_author=E. H. Saenger, N. Gold, S. A. Shapiro; citation_volume=31; citation_issue=1; citation_publication_date=2000; citation_pages=77-92; citation_doi=10.1016/S0165-2125(99)00023-2; citation_id=CR23
citation_journal_title=Geophysical Prospecting; citation_title=New curvilinear scheme for elastic wave propagation in presence of curved topography; citation_author=I. Tarrass, L. Giraud, P. Thore; citation_volume=59; citation_issue=5; citation_publication_date=2011; citation_pages=889-906; citation_doi=10.1111/j.1365-2478.2011.00972.x; citation_id=CR24
citation_title=Numerical grid generation: foundations and applications; citation_publication_date=1985; citation_id=CR25; citation_author=J. F. Thompson; citation_author=Z. U. A. Warsi; citation_author=C. W. Mastin; citation_publisher=Elsevier Science Publishing Co Inc
citation_journal_title=Chinese Journal of Geophysics; citation_title=High–Order Finite–Difference Numerical Modeling of Wave Propagation in Viscoelastic TTI Media Using Rotated Staggered Grid; citation_author=H. Y. Yan, Y. Liu; citation_volume=55; citation_issue=2; citation_publication_date=2012; citation_pages=252-265; citation_doi=10.1002/cjg2.1719; citation_id=CR26
citation_journal_title=Oil Geophysical Prospecting; citation_title=Numerical simulation of Lebedev grid for viscoelastic media with irregular free–surface; citation_author=Y. Yang, J. P. Huang, J. S. Lei, Z. C. Li, K. Tian, Q. Y. Li; citation_volume=51; citation_issue=4; citation_publication_date=2016; citation_pages=698-706; citation_id=CR27
citation_journal_title=Geophysical Journal International; citation_title=Traction image method for irregular free surface boundaries in finite difference seismic wave simulation; citation_author=W. Zhang, X. Chen; citation_volume=167; citation_issue=1; citation_publication_date=2006; citation_pages=337-353; citation_doi=10.1111/j.1365-246X.2006.03113.x; citation_id=CR28
citation_journal_title=Geophysical Journal International; citation_title=Threedimensional elastic wave numerical modelling in the presence of surface topography by a collocatedgrid finite–difference method on curvilinear grids; citation_author=W. Zhang, Z. Zhang, X. Chen; citation_volume=190; citation_issue=1; citation_publication_date=2012; citation_pages=358-378; citation_doi=10.1111/j.1365-246X.2012.05472.x; citation_id=CR29
citation_journal_title=Applied Geophysics; citation_title=Finitedifference modeling of surface waves in poroelastic media and stress mirror conditions; citation_author=Y. Zhang, P. Ping, S. X. Zhang; citation_volume=14; citation_issue=1; citation_publication_date=2017; citation_pages=105-114; citation_doi=10.1007/s11770-017-0601-5; citation_id=CR30