Irregular colorings of derived graphs of flower graph

Springer Science and Business Media LLC - Tập 77 - Trang 47-57 - 2019
A. Rohini1, M. Venkatachalam1, R. Sangamithra1
1PG & Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore, India

Tóm tắt

The concept of irregular coloring was established by Radcliffe and Zhang (AKCE J Graphs Combinator 3(2):175–191, 2006). Irregular coloring is a proper coloring, in which distinct vertices have different color codes. In this paper, we find the irregular chromatic number for the following graphs: $$M\left( F_{n}\right) $$, $$T\left( F_{n}\right) $$, $$L\left( F_{n}\right) $$, $$C\left( F_{n}\right) $$, $$M\left( J_{2,n}\right) $$, $$T\left( J_{2,n}\right) $$, $$L\left( J_{2,n}\right) $$, $$C\left( J_{2,n}\right) $$, $$M\left( W_{n}\right) $$, $$T\left( W_{n}\right) $$, $$L\left( W_{n}\right) $$, $$C\left( W_{n}\right) $$, $$M\left( B_{n}\right) $$, $$T\left( B_{n}\right) $$, $$L\left( B_{n}\right) $$ and $$C\left( B_{n}\right) $$.

Tài liệu tham khảo

Anderson, M., Vitray, R., Yellen, J.: Irregular colorings of regular graphs. Discret. Math. 312(15), 2329–2336 (2012) Avudainayaki, R., Selvam, B., Thirusangu, K.: Irregular coloring of some classes of graphs. Int. J. Pure Appl. Math. 109(10), 119–127 (2016) Michalak, D.: On Middle and Total Graphs with Coarseness Number Equal 1, Springer Verlag Graph Theory, Lagow Proceedings, pp. 139–150. Springer, Berlin (1981) Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Combinator. 18, 6 (2011) Harary, F.: Graph Theory. Narosa Publishing home, New Delhi (1969) Okamoto, F., Radcliffe, M., Zhang, P.: On the irregular chromatic number of a graph. Congr. Numer. 181, 129–150 (2006) Zhang, P.: A Kaleidoscopic View of Graph Colorings. Springer, Basel (2016) Radcliffe, M., Zhang, P.: Irregular coloring of graphs. Bull. Inst. Combinator. Appl. 49, 41–59 (2007) Radcliffe, M., Zhang, P.: On Irregular coloring of graphs. AKCE J. Graphs Combinator. 3(2), 175–191 (2006) Rohini, A., Venkatachalam, M.: On irregular colorings of double wheel graph families. Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat. 68(1), 944–949 (2019) Rohini, A., Venkatachalam, M.: On irregular colorings of fan graph families. IOP Conf. Ser. J. Phys. 1139(1–6), 012061 (2018) Rohini, A., Venkatachalam, M.: On irregular colorings of wheel related graphs. Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat. 68(2), 1462–1472 (2019) Vernold V.J.: Harmonious Coloring of Total Graphs, \(n\)-leaf, Central Graphs and Circumdetic Graphs. Bharathiar University, Ph.D Thesis, Coimbatore, India (2007)