Irregular Shaped Small Nodule Detection Using a Robust Scan Statistic

Statistics in Biosciences - Tập 15 Số 1 - Trang 141-162 - 2023
Ali Abolhassani1, Marcos O. Prates2, Safieh Mahmoodi3
1Department of Applied Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
2Departamento de Estatística, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
3Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adelberger KL, Steidel CC, Pettini M, Shapley AE, Reddy NA, Erb DK (2005) The spatial clustering of star-forming galaxies at redshifts 1.4 $$\lesssim \text{ z }\lesssim $$ 3.5. Astrophys J 619(2):697

Mo H, White SD (1996) An analytic model for the spatial clustering of dark matter haloes. Mon Not R Astron Soc 282(2):347–361

Haralick R, Dinstein I (1975) A spatial clustering procedure for multi-image data. IEEE Trans Circuits Syst 22(5):440–450

Zhang L, Zhu Z (2012) Spatial multiresolution cluster detection method. arXiv:1205.2106

Han J (2001) Spatial clustering methods in data mining: a survey. Geographic data mining and knowledge discovery, pp 188–217

Harries KD et al (1999) Mapping crime: principle and practice. Technical report, US Department of Justice, Office of Justice Programs, National Institute of Justice

Murray AT, Grubesic TH, Wei R (2014) Spatially significant cluster detection. Spat Stat 10:103–116

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853

Stohlgren TJ, Binkley D, Chong GW, Kalkhan MA, Schell LD, Bull KA, Otsuki Y, Newman G, Bashkin M, Son Y (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69(1):25–46

Grubesic TH (2006) On the application of fuzzy clustering for crime hot spot detection. J Quant Criminol 22(1):77

Yamada I, Rogerson P (2008) Statistical detection and surveillance of geographic clusters. Chapman and Hall/CRC, Boca Raton

Haralick R, Kelly G (1969) Pattern recognition with measurement space and spatial clustering for multiple images. Proc IEEE 57(4):654–665

Gutteridge A, Bartlett GJ, Thornton JM (2003) Using a neural network and spatial clustering to predict the location of active sites in enzymes. J Mol Biol 330(4):719–734

Bar-Hen A, Emily M, Picard N (2015) Spatial cluster detection using nearest neighbor distance. Spat stat 14:400–411

Culvenor DS, Coops N, Preston R, Tolhurst KG (1998) A spatial clustering approach to automated tree crown delineation. In: Proceedings of the international forum on automated interpretation of high spatial resolution digital imagery for forestry, pp 67–80

Duczmal LH, Moreira GJ, Burgarelli D, Takahashi RH, Magalhães FC, Bodevan EC (2011) Voronoi distance based prospective space-time scans for point data sets: a dengue fever cluster analysis in a southeast Brazilian town. Int J Health Geogr 10(1):29

Wieland SC, Brownstein JS, Berger B, Mandl KD (2007) Density-equalizing euclidean minimum spanning trees for the detection of all disease cluster shapes. Proc Natl Acad Sci 104(22):9404–9409

Kulldorff M, Nagarwalla N (1995) Spatial disease clusters: detection and inference. Stat Med 14(8):799–810

Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26(6):1481–1496

Cançado AL, da Silva CQ, da Silva MF (2014) A spatial scan statistic for zero-inflated poisson process. Environ Ecol Stat 21(4):627–650

Abolhassani A, Prates MO, Castellares F, Mahmoodi S (2020) Zero-inflated bell scan: a more flexible spatial scan statistic. Spat Stat 36:100433

de Lima MS, Duczmal LH, Neto JC, Pinto LP (2015) Spatial scan statistics for models with overdispersion and inflated zeros. Stat Sin 25:225–241

Assunção R, Costa M, Tavares A, Ferreira S (2006) Fast detection of arbitrarily shaped disease clusters. Stat Med 25(5):723–742

Costa MA, Assunção RM, Kulldorff M (2012) Constrained spanning tree algorithms for irregularly-shaped spatial clustering. Comput Stat Data Anal 56(6):1771–1783

Zhou R, Shu L, Su Y (2015) An adaptive minimum spanning tree test for detecting irregularly-shaped spatial clusters. Comput Stat Data Anal 89:134–146

Yin P, Mu L (2018) A hybrid method for fast detection of spatial disease clusters in irregular shapes. GeoJournal 83(4):693–705

Abolhassani A, Prates MO (2021) An up-to-date review of scan statistics. Stat Surv 15:111–153

Castellares F, Prates MO, Abolhassani A (2019) Comments on “a spatial scan statistic for compound poisson data’’. Stat Med 38(7):1297–1299

Kulldorff M, Huang L, Pickle L, Duczmal L (2006) An elliptic spatial scan statistic. Stat Med 25(22):3929–3943

Neill DB (2012) Fast subset scan for spatial pattern detection. J R Stat Soc Ser B 74(2):337–360

Aboukhamseen S, Soltani A, Najafi M (2016) Modelling cluster detection in spatial scan statistics: formation of a spatial poisson scanning window and an adhd case study. Stat Probab Lett 111:26–31

Soltani A, Aboukhamseen S (2015) An alternative cluster detection test in spatial scan statistics. Commun Stat Theory Methods 44(8):1592–1601

Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36(6):1389–1401

Bell ET (1934) Exponential numbers. Am Math Mon 41(7):411–419

Bell ET (1934) Exponential polynomials. Ann Math 35(2):258–277

Prates MO, Kulldorff M, Assunção RM (2014) Relative risk estimates from spatial and space-time scan statistics: are they biased? Stat Med 33(15):2634–2644

Popescu LM, Lewitt RM (2006) Small nodule detectability evaluation using a generalized scan-statistic model. Phys Med Biol 51(23):6225

Kim S, Jung I (2017) Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data. PLoS ONE 12(7):e0182234

Wang W, Zhang T, Yin F, Xiao X, Chen S, Zhang X, Li X, Ma Y (2020) Using the maximum clustering heterogeneous set-proportion to select the maximum window size for the spatial scan statistic. Sci Rep 10(1):1–14

R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria