Irrational Toric Varieties and Secondary Polytopes

Discrete & Computational Geometry - Tập 67 - Trang 1053-1079 - 2022
Ata Firat Pir1, Frank Sottile2
1San Jose, USA
2Department of Mathematics, Texas A&M University, College Station, USA

Tóm tắt

The space of torus translations and degenerations of a projective toric variety forms a toric variety associated to the secondary fan of the integer points in the polytope corresponding to the toric variety. This is used to identify a moduli space of real degenerations with the secondary polytope. A configuration $${{\mathcal {A}}}$$ of real vectors gives an irrational projective toric variety in a simplex. We identify a space of translations and degenerations of the irrational projective toric variety with the secondary polytope of  $${{\mathcal {A}}}$$ . For this, we develop a theory of irrational toric varieties associated to arbitrary fans. When the fan is rational, the irrational toric variety is the nonnegative part of the corresponding classical toric variety. When the fan is the normal fan of a polytope, the irrational toric variety is homeomorphic to that polytope.

Tài liệu tham khảo

Alexeev, V.: Complete moduli in the presence of semiabelian group action. Ann. Math. 155(3), 611–708 (2002) Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14(1), 1–15 (1982) Battaglia, F., Prato, E.: Generalized toric varieties for simple nonrational convex polytopes. Internat. Math. Res. Notices 2001(24), 1315–1337 (2001) Battaglia, F., Zaffran, D.: Foliations modeling nonrational simplicial toric varieties. Internat. Math. Res. Notices 2015(22), 11785–11815 (2015) Birch, M.W.: Maximum likelihood in three-way contingency tables. J. R. Stat. Soc. Ser. B 25, 220–233 (1963) Buchstaber, V.M., Panov, T.E.: Toric Topology. Mathematical Surveys and Monographs, vol. 204. American Mathematical Society, Providence (2015) Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011) Craciun, G., García-Puente, L.D., Sottile, F.: Some geometrical aspects of control points for toric patches. In: Mathematical Methods for Curves and Surfaces (Tønsberg 2008). Lecture Notes in Comput. Sci., vol. 5862, pp. 111–135. Springer, Berlin (2010) Darmois, G.: Sur les lois de probabilité à estimation exhaustive. C. R. Acad. Sci. Paris 200, 1265–1266 (1935) Davis, M.W., Januszkiewicz, T.: Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J. 62(2), 417–451 (1991) De Loera, J.A., Rambau, J., Santos, F.: Triangulations. Algorithms and Computation in Mathematics, vol. 25. Springer, Berlin (2010) Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics, vol. 168. Springer, New York (1996) Ford, T.J.: The toroidal embedding arising from an irrational fan. Results Math. 35(1–2), 44–69 (1999) Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993) Garcia-Puente, L.D., Sottile, F.: Linear precision for parametric patches. Adv. Comput. Math. 33(2), 191–214 (2010) García-Puente, L.D., Sottile, F., Zhu, Ch.: Toric degenerations of Bézier patches. ACM Trans. Graphics 30(5), # 110 (2011) Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994) Goodman, L.A.: On methods for comparing contingency tables. J. R. Stat. Soc. Ser. A 126, 94–108 (1963) Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. 67(3), 491–513 (1982) Kapranov, M.M., Sturmfels, B., Zelevinsky, A.V.: Quotients of toric varieties. Math. Ann. 290(4), 643–655 (1991) Kapranov, M.M., Sturmfels, B., Zelevinsky, A.V.: Chow polytopes and general resultants. Duke Math. J. 67(1), 189–218 (1992) Katzarkov, L., Lupercio, E., Meersseman, L., Verjovsky, A.: The definition of a non-commutative toric variety. In: Algebraic Topology: Applications and New Directions (Stanford 2012). Contemp. Math., vol. 620, pp. 223–250. American Mathematical Society, Providence (2014) Koopman, B.O.: On distributions admitting a sufficient statistic. Trans. Am. Math. Soc. 39(3), 399–409 (1936) Krasauskas, R.: Toric surface patches. Adv. Comput. Math. 17(1–2), 89–113 (2002) López de Medrano, S., Verjovsky, A.: A new family of complex, compact, non-symplectic manifolds. Bol. Soc. Brasil. Mater. (N.S.) 28(2), 253–269 (1997) Meersseman, L.: A new geometric construction of compact complex manifolds in any dimension. Math. Ann. 317(1), 79–115 (2000) Miller, E.: Essential graded algebra over polynomial rings with real exponents (2020). arXiv:2008.03819 Miller, E.: Primary decomposition over partially ordered groups (2020). arXiv:2008.00093 Miller, E.: Stratifications of real vector spaces from constructible sheaves with conical microsupport (2020). arXiv:2008.00091 Munkres, J.R.: Topology: A First Course. Prentice-Hall, Englewood Cliffs (1975) Pachter, L., Sturmfels, B. (eds.): Algebraic Statistics for Computational Biology. Cambridge University Press, New York (2005) Pir, A.F.: Irrational Toric Varieties. PhD thesis, Texas A &M University (2018). https://core.ac.uk/download/pdf/187124453.pdf Pitman, E.J.G.: Sufficient statistics and intrinsic accuracy. Math. Proc. Cambr. Phil. Soc. 32(4), 567–579 (1936) Postinghel, E., Sottile, F., Villamizar, N.: Degenerations of real irrational toric varieties. J. Lond. Math. Soc. 92(2), 223–241 (2015) Prato, E.: Simple non-rational convex polytopes via symplectic geometry. Topology 40(5), 961–975 (2001) Putcha, M.S.: Linear Algebraic Monoids. London Mathematical Society Lecture Note Series, vol. 133. Cambridge University Press, Cambridge (1988) Renner, L.E.: Linear Algebraic Monoids. Encyclopaedia of Mathematical Sciences, vol. 134. Invariant Theory and Algebraic Transformation Groups, vol. 5. Springer, Berlin (2005) Sottile, F.: Toric ideals, real toric varieties, and the moment map. In: Topics in Algebraic Geometry and Geometric Modeling (Vilnius 2002). Contemp. Math., vol. 334, pp. 225–240. American Mathematical Society, Providence (2003) Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. American Mathematical Society, Providence (1996) Verjovsky, A.: Intersection of quadrics in \(\mathbb{C}^n\), moment-angle manifolds, complex manifolds and convex manifolds. In: Complex non-Kähler Geometry (Cetraro 2018). Lecture Notes in Math., vol. 2246. Fond. CIME/CIME Found. Subser., pp. 163–240. Springer, Cham (2019) Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)