Iron reduction characteristics and kinetic analysis of Comamonas testosteroni Y1: a potential iron-reduction bacteria
Tài liệu tham khảo
He, 2021, Acceleration mechanism of bioavailable Fe(Ⅲ) on Te(IV) bioreduction of Shewanella oneidensis MR-1: Promotion of electron generation, electron transfer and energy level, J. Hazard Mater., 403, 10.1016/j.jhazmat.2020.123728
Weber, 2006, Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction, Nat. Rev. Microbiol., 4, 752, 10.1038/nrmicro1490
Honetschlägerová, 2018, Interactions of nanoscale zero valent iron and iron reducing bacteria in remediation of trichloroethene, Int. Biodeterior. Biodegrad., 127, 241, 10.1016/j.ibiod.2017.10.009
Lovley, 1997, Microbial Fe (III) reduction in subsurface environments, FEMS Microbiol. Rev., 20, 305, 10.1111/j.1574-6976.1997.tb00316.x
Lovley, 1989, Oxidation of aromatic contaminants coupled to microbial iron reduction, Nature, 339, 297, 10.1038/339297a0
Su, 2020, Reduction of iron oxides and microbial community composition in iron-rich soils with different organic carbon as electron donors, Int. Biodeterior. Biodegrad., 148, 10.1016/j.ibiod.2019.104881
Liu, 2017, Enhanced bioreduction of nitrobenzene by reduced graphene oxide materials: effects of surface modification and coexisting soluble electron shuttles, Environ. Sci. Pollut. Res Int, 24, 26874, 10.1007/s11356-017-0673-z
Sun, 2018, Model-based analysis of arsenic immobilization via iron mineral transformation under advective flows, Environ. Sci. Technol., 52, 9243, 10.1021/acs.est.8b01762
Yan, 2018, U(VI) reduction by biogenic and abiotic hydroxycarbonate green rusts: impacts on U(IV) speciation and stability over time, Environ. Sci. Technol., 52, 4601, 10.1021/acs.est.7b06405
Li, 2018, Simultaneous Fe (III) reduction and ammonia oxidation process in anammox sludge, J. Environ. Sci., 64, 42, 10.1016/j.jes.2017.01.002
Ding, 2014, Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence, Environ. Sci. Technol., 48, 10641, 10.1021/es503113s
Bao, 2017, Sulfur-driven iron reduction coupled to anaerobic ammonium oxidation, Environ. Sci. Technol., 51, 6691, 10.1021/acs.est.6b05971
Zhou, 2016, Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction, Environ. Sci. Technol., 50, 9298, 10.1021/acs.est.6b02077
Hu, 2014, Soil microbe mediated iron cycling and its environmental implication, Acta Pedol. Sin., 51, 683
Craddock, 2011, Iron and carbon isotope evidence for microbial iron respiration throughout the Archean, Earth Planet. Sci. Lett., 303, 121, 10.1016/j.epsl.2010.12.045
Horinouchi, 2019, Identification of 9-oxo-1, 2, 3, 4, 5, 6, 10, 19-octanor-13, 17-secoandrost-8 (14)-ene-7, 17-dioic acid as a metabolite of steroid degradation in Comamonas testosteroni TA441 and the genes involved in the conversion, J. Steroid Biochem. Mol. Biol., 185, 268, 10.1016/j.jsbmb.2018.07.009
Liu, 2020, The characterization of a short chain dehydrogenase/reductase (SDRx) in Comamonas testosteroni, Toxicol. Rep., 7, 460, 10.1016/j.toxrep.2020.02.015
Pruneda-Paz, 2004, Identification of a novel steroid inducible gene associated with the βhsd locus of Comamonas testosteroni, J. Steroid Biochem. Mol. Biol., 88, 91, 10.1016/j.jsbmb.2003.10.010
Oubrie, 2002, Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni: structural basis for substrate oxidation and electron transfer, J. Biol. Chem., 277, 3727, 10.1074/jbc.M109403200
Yan, 2021, Extracellular polymeric substances from Shewanella oneidensis MR-1 biofilms mediate the transformation of Ferrihydrite, Sci. Total Environ., 784, 10.1016/j.scitotenv.2021.147245
Wang, 2019, Biogenic iron mineralization of polyferric sulfate by dissimilatory iron reducing bacteria: Effects of medium composition and electric field stimulation, Sci. Total Environ., 684, 466, 10.1016/j.scitotenv.2019.05.322
Cai, 2018, Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability, Bioresour. Technol., 250, 163, 10.1016/j.biortech.2017.07.151
Mu, 2006, Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures, Bioresour. Technol., 97, 1302, 10.1016/j.biortech.2005.05.014
Selvaraj, 2021, Mathematical modeling and simulation of newly isolated bacillus cereus M1GT for tannase production through semi-solid state fermentation with agriculture residue triphala, South Afr. J. Chem. Eng., 35, 89, 10.1016/j.sajce.2020.10.001
Yu, 2019, Novel phosphate-solubilising bacteria isolated from sewage sludge and the mechanism of phosphate solubilisation, Sci. Total Environ., 658, 474, 10.1016/j.scitotenv.2018.12.166
Shen, 2008, Anaerobic biodegradation of 1,4-dioxane by sludge enriched with iron-reducing microorganisms, Bioresour. Technol., 99, 2483, 10.1016/j.biortech.2007.04.054
Xia, 2018, Promotion by humus-reducing bacteria for the degradation of UV254 absorbance in reverse-osmosis concentrates pretreated with O3-assisted UV-Fenton method, Environ. Technol., 39, 2178, 10.1080/09593330.2017.1351497
Sun, 2019, Screening and characterization of mixotrophic sulfide oxidizing bacteria for odorous surface water bioremediation, Bioresour. Technol., 290, 10.1016/j.biortech.2019.121721
Yuan, 2018, A new model for simulating microbial cyanide production and optimizing the medium parameters for recovering precious metals from waste printed circuit boards, J. Hazard Mater., 353, 135, 10.1016/j.jhazmat.2018.04.007
Kim, 2017, Use of food waste-recycling wastewater as an alternative carbon source for denitrification process: a full-scale study, Bioresour. Technol., 245, 1016, 10.1016/j.biortech.2017.08.168
Wang, 2021, A collaborative effect of algae-bacteria symbiotic and biological activated carbon system on black odorous water pretreated by UV photolysis, Biochem. Eng. J., 169, 10.1016/j.bej.2021.107983
Zhu, 2012, Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies, Bioresour. Technol., 124, 455, 10.1016/j.biortech.2012.08.059
Chen, 2002, Spectroscopic characterization of the structural and functional properties of natural organic matter fractions, Chemosphere, 48, 59, 10.1016/S0045-6535(02)00041-3
Williams, 2010, Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems, Limnol. Oceanogr., 55, 1159, 10.4319/lo.2010.55.3.1159
Chari, 2012, Seasonal and spatial constraints of fluorophores in the midwestern Bay of Bengal by PARAFAC analysis of excitation emission matrix spectra, Estuar., Coast. Shelf Sci., 100, 162, 10.1016/j.ecss.2012.01.012
Zhang, 2010, Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude, Limnol. Oceanogr., 55, 2645, 10.4319/lo.2010.55.6.2645
Wang, 2020, Effects of fish culture on particulate organic matter in a reservoir-type river as revealed by absorption spectroscopy and fluorescence EEM-PARAFAC, Chemosphere, 239, 10.1016/j.chemosphere.2019.124734
Newman, 2000, A role for excreted quinones in extracellular electron transfer, Nature, 405, 94, 10.1038/35011098
Delgado, 2019, Improvement of the electron transfer rate in Shewanella oneidensis MR-1 using a tailored periplasmic protein composition, Bioelectrochemistry, 129, 18, 10.1016/j.bioelechem.2019.04.022
Davidson, 2001, Pyrroloquinoline quinone (PQQ) from methanol dehydrogenase and tryptophan tryptophylquinone (TTQ) from methylamine dehydrogenase, Adv. Protein Chem., 58, 95, 10.1016/S0065-3233(01)58003-1
Davidson, 2004, Electron transfer in quinoproteins, Arch. Biochem. Biophys., 428, 32, 10.1016/j.abb.2004.03.022
Aghaie, 2012, Kinetic modeling of the bioleaching process of iron removal from kaolin, Appl. Clay Sci., 65–66, 43, 10.1016/j.clay.2012.04.011