Iron oxide/poly (vinylidene fluoride-hexafluoropropylene) membranes for lithium-ion battery separator and arsenic removal applications
Tài liệu tham khảo
Agbedahin, 2019, Sustainable development, Education for Sustainable Development, and the 2030 Agenda for Sustainable Development: Emergence, efficacy, eminence, and future, Sustain. Dev., 27, 669, 10.1002/sd.1931
WHO/UNICEF. Progress on household drinking water, sanitation and hygiene 2000–2017: Special focus on inequalities, 2019. (accessed 2021 12/02/2021).
Cancer, 1994, IARC monographs on evaluating carcinogenic risk to humans: some industrial chemicals, IARC Monogr. Eval. Carcinog. risk Hum.: some Ind. Chem.
Song, 2006, Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite, Water Res., 40, 364, 10.1016/j.watres.2005.09.046
da Silva, 2018, Arsenic removal from As-hyperaccumulator Pteris vittata biomass: coupling extraction with precipitation, Chemosphere, 193, 288, 10.1016/j.chemosphere.2017.10.116
Sandhi, 2018, Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans), Environ. Pollut., 237, 1098, 10.1016/j.envpol.2017.11.038
Zhang, 2018, Heterogeneous Fenton decontamination of organoarsenicals and simultaneous adsorption of released arsenic with reduced secondary pollution, Chem. Eng. J., 344, 1, 10.1016/j.cej.2018.03.072
Salazar, H.; Martins, P.M.; Valverde, A.; Fernández de Luis, R.; Vilas-Vilela, J.L.; Ferdov, S.; Botelho, G.; Lanceros-Mendez, S. Reusable Nanocomposite Membranes for Highly Efficient Arsenite and Arsenate Dual Removal from Water. Advanced Materials Interfaces n/a (n/a), 2101419. DOI: https://doi.org/10.1002/admi.202101419.
Goswami, 2012, Arsenic adsorption using copper (II) oxide nanoparticles, Chem. Eng. Res. Des., 90, 1387, 10.1016/j.cherd.2011.12.006
Foroutan, 2019, Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents, Environ. Sci. Pollut. Res., 26, 29748, 10.1007/s11356-019-06070-5
Salazar, 2016, Poly(vinylidene fluoride-hexafluoropropylene)/bayerite composite membranes for efficient arsenic removal from water, Mater. Chem. Phys., 183, 430, 10.1016/j.matchemphys.2016.08.049
Zhu, 2018, Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: adsorption mechanism study and application to a lab-scale column, J. Environ. Manag., 211, 73, 10.1016/j.jenvman.2018.01.049
Sherlala, 2019, Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite, J. Environ. Manag., 246, 547, 10.1016/j.jenvman.2019.05.117
Nguyen, 2009, Arsenic removal by a membrane hybrid filtration system, Desalination, 236, 363, 10.1016/j.desal.2007.10.088
Seibel, 2021, End-of-life reverse osmosis membranes: Recycle procedure and its applications for the treatment of brackish and surface water, J. Appl. Res. Water Wastewater, 8, 77
Pontié, 2015, Old RO membranes: solutions for reuse, Desalin. Water Treat., 53, 1492, 10.1080/19443994.2014.943060
Stephan, 2009, ELECTROLYTES | Gel, 140
Choi, 2010
Balbuena, 2004
Abraham, 1995, Polymer Electrolytes Reinforced by Celgard® Membranes, J. Electrochem. Soc., 142, 683, 10.1149/1.2048517
Chen, 2023, Unified throughout-pore microstructure enables ultrahigh separator porosity for robust high-flux lithium batteries, Electron, 1, 10.1002/elt2.1
Arora, 2004, Battery separators, Chem. Rev., 104, 4419, 10.1021/cr020738u
Costa, 2012, Effect of the microsctructure and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/lithium perchlorate trihydrate composite membranes for battery applications, Solid State Ion., 217, 19, 10.1016/j.ssi.2012.04.011
Chung, 2009, Enhancement of meltdown temperature of the polyethylene lithium-ion battery separator via surface coating with polymers having high thermal resistance, Ind. Eng. Chem. Res., 48, 4346, 10.1021/ie900096z
Tang, 2022, Three-phase interface photocatalysis for the enhanced degradation and antibacterial property, J. Colloid Interface Sci., 612, 194, 10.1016/j.jcis.2021.12.072
Venugopal, 1999, Characterization of microporous separators for lithium-ion batteries, J. Power Sources, 77, 34, 10.1016/S0378-7753(98)00168-2
Moura, 2022, Adsorption of cyanotoxins on polypropylene and polyethylene terephthalate: Microplastics as vector of eight microcystin analogues, Environ. Pollut., 303, 10.1016/j.envpol.2022.119135
Choi, 1998, Lithium ion conduction in PEO-salt electrolytes gelled with PAN, Solid State Ion., 123–127, 113
Kang, 2001, Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries, J. Power Sources, 92, 255, 10.1016/S0378-7753(00)00546-2
Bernhardt, 2021, Tunable photocatalytic activity of PEO-stabilized ZnO–polyoxometalate nanostructures in aqueous solution, Adv. Mater. Interfaces, 8, 10.1002/admi.202002130
Ding, 2022, Piezo-photocatalytic flexible PAN/TiO2 composite nanofibers for environmental remediation, Sci. Total Environ., 824
Djian, 2009, Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity, J. Power Sources, 187, 575, 10.1016/j.jpowsour.2008.11.027
Costa, 2012, Electroactive Poly(Vinylidene Fluoride-Trifluorethylene) (PVDF-TrFE) Microporous Membranes for Lithium-Ion Battery Applications, Ferroelectrics, 430, 103, 10.1080/00150193.2012.677729
Costa, 2012, Effect of degree of porosity on the properties of poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators, J. Membr. Sci., 8, 407
Martins, 2019, Photocatalytic microporous membrane against the increasing problem of water emerging pollutants, Materials, 12, 10.3390/ma12101649
Salazar, 2022, Reusable nanocomposite membranes for highly efficient arsenite and arsenate dual removal from water, Adv. Mater. Interfaces, 9, 2101419, 10.1002/admi.202101419
Saunier, 2004, Plasticized microporous poly(vinylidene fluoride) separators for lithium-ion batteries. III. Gel properties and irreversible modifications of poly(vinylidene fluoride) membranes under swelling in liquid electrolytes, J. Polym. Sci. Part B: Polym. Phys., 42, 2308, 10.1002/polb.20099
Nakajima, 2005, Fluor. Mater. Energy Convers.; Elsevier
Seeram Ramakrishna, 2005
Zhu, 2020, Magnetic and mesoporous Fe3O4-modified glass fiber separator for high-performance lithium-sulfur battery, Ionics, 26, 2325, 10.1007/s11581-019-03350-5
MacArthur, 2013, Towards the circular economy, economic and business rationale for an accelerated transition, Ellen. MacArthur Found.: Cowes, UK, 21
Sassanelli, 2019, Circular economy performance assessment methods: A systematic literature review, J. Clean. Prod., 229, 440, 10.1016/j.jclepro.2019.05.019
Cao, 2018, Efficient reuse of anode scrap from lithium-ion batteries as cathode for pollutant degradation in electro-Fenton process: Role of different recovery processes, Chem. Eng. J., 337, 256, 10.1016/j.cej.2017.12.104
Guo, 2020, Efficient degradation of industrial pollutants with sulfur (IV) mediated by LiCoO2 cathode powders of spent lithium ion batteries: A “treating waste with waste” strategy, J. Hazard. Mater., 399, 10.1016/j.jhazmat.2020.123090
Serra, 2021, Porous composite bifunctional membranes for lithium-ion battery separator and photocatalytic degradation applications: toward multifunctionality for circular economy, Adv. Energy Sustain. Res., 2, 2100046, 10.1002/aesr.202100046
Salazar, 2015, Poly(vinylidene fluoride-trifluoroethylene)/NAY zeolite hybrid membranes as a drug release platform applied to ibuprofen release, Colloids Surf. A: Physicochem. Eng. Asp., 469, 93, 10.1016/j.colsurfa.2014.12.064
Salazar, H.; Martins, P.M.; Valverde, A.; de Luis, R.F.; Vilas-Vilela, J.L.; Ferdov, S.; Botelho, G.; Lanceros-Mendez, S. Reusable Nanocomposite Membranes for Highly Efficient Arsenite and Arsenate Dual Removal from Water. Advanced Materials Interfaces, 2021, n/a (n/a), 2101419, https://doi.org/10.1002/admi.202101419. DOI: Artn 210141910.1002/Admi.202101419 (acccessed 2021/11/22).
Giri, 2022, Sustainable removal of arsenic from simulated wastewater using solid waste seed pods biosorbents of Cassia fistula L, Chemosphere, 287, 10.1016/j.chemosphere.2021.132308
Lima, 2022, V. G. S. Sorption of arsenic by composts and biochars derived from the organic fraction of municipal solid wastes: Kinetic, isotherm and oral bioaccessibility study, Environ. Res., 204, 10.1016/j.envres.2021.111988
Martinez–Vargas, 2021, As(III) adsorption on co-precipitated cobalt substituted ferrite nanoparticles, J. Magn. Magn. Mater., 539, 10.1016/j.jmmm.2021.168389
Hua, 2018, Adsorption of low-concentration arsenic from water by co-modified bentonite with manganese oxides and poly(dimethyldiallylammonium chloride), J. Environ. Chem. Eng., 6, 156, 10.1016/j.jece.2017.11.062
Gupta, 2021, Improved arsenite adsorption using iron-impregnated marble dust with surface functionalized by quaternary ammonium ions, Int. J. Environ. Sci. Technol., 18, 2955, 10.1007/s13762-020-03013-3
Pak, 2021, Adsorptive removal of arsenic and lead by stone powder/chitosan/maghemite composite beads, Int. J. Environ. Res. Public Health, 18, 10.3390/ijerph18168808
Yew, 2016, Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract, Nanoscale Res. Lett., 11, 276, 10.1186/s11671-016-1498-2
Sousa, 2014, Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties, Polym. Test., 40, 245, 10.1016/j.polymertesting.2014.09.012
Wong, 2017, Predictive design, etch-free fabrication of through-hole membrane with ordered pores and hierarchical layer structure, Adv. Mater. Technol., 2, 1600169, 10.1002/admt.201600169
Martins, 2014, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications, Prog. Polym. Sci., 39, 683, 10.1016/j.progpolymsci.2013.07.006
Scopus. Salimi, 2003, Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films, Polym. Test., 22, 699, 10.1016/S0142-9418(03)00003-5
Barbosa, 2021, High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride-co-hexafluoropropylene) Combining Ionic Liquid and Zeolite, ACS Appl. Mater. Interfaces, 13, 48889, 10.1021/acsami.1c15209
Gsaiz, 2018, Ionic liquids for the control of the morphology in poly(vinylidene fluoride-co-hexafluoropropylene) membranes, Mater. Des., 155, 325, 10.1016/j.matdes.2018.06.013
Chen, 2021, Efficient degradation of roxarsone and simultaneous in-situ adsorption of secondary inorganic arsenic by a combination of Co3O4-Y2O3 and peroxymonosulfate, J. Hazard. Mater., 407, 10.1016/j.jhazmat.2020.124559
Moreira, 2021, Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes, Process Saf. Environ. Prot., 148, 604, 10.1016/j.psep.2020.11.033
Revellame, 2020, Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review, Clean. Eng. Technol., 1
Choong, 2021, Granular Mg-Fe layered double hydroxide prepared using dual polymers: Insights into synergistic removal of As(III) and As(V, J. Hazard. Mater., 403, 10.1016/j.jhazmat.2020.123883
D, 2012, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn 2+ Unto Phosphoric Acid Modified Rice Husk, J. Appl. Chem., 3, 38
Zhang, 2019, Amorphous Fe/Mn bimetal–organic frameworks: outer and inner structural designs for efficient arsenic(iii) removal, J. Mater. Chem. A, 7, 10.1039/C8TA10394A
Yang, 2022, Synergistic removal of As(V) from aqueous solution by nanozero valent iron loaded with zeolite 5A synthesized from fly ash, J. Hazard. Mater., 424, 10.1016/j.jhazmat.2021.127428
Xie, 2022, Arsenic removal by manganese-doped mesoporous iron oxides from groundwater: Performance and mechanism, Sci. Total Environ., 806, 10.1016/j.scitotenv.2021.150615
Lin, 2022, Bimetallic Fe/Ni nanoparticles derived from green synthesis for the removal of arsenic (V) in mine wastewater, J. Environ. Manag., 301, 10.1016/j.jenvman.2021.113838
Edjah, 2021, The use of statistical methods to assess groundwater contamination in the Lower Tano river basin, Ghana, West Africa, Environ. Monit. Assess., 193, 10.1007/s10661-021-09514-z
Scopus. Rahaman, 2021, Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management, Environ. Pollut., 289
Rodríguez-Carrillo, 2022, Exploring the relationship between metal exposure, BDNF, and behavior in adolescent males, Int. J. Hyg. Environ. Health, 239, 10.1016/j.ijheh.2021.113877
Gören, 2015, Effect of the degree of porosity on the performance of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium-ion battery separators, Solid State Ion., 280, 1, 10.1016/j.ssi.2015.08.003
Chang, 2010, Electrochemical impedance spectroscopy, Annu. Rev. Anal. Chem., 3, 207, 10.1146/annurev.anchem.012809.102211
Macdonald, 1992, Impedance spectroscopy, Ann. Biomed. Eng., 20, 289, 10.1007/BF02368532
Yang, 2016, How to make lithium iron phosphate better: a review exploring classical modification approaches in-depth and proposing future optimization methods, J. Mater. Chem. A, 4, 18210, 10.1039/C6TA05048D
Nien, 2009, Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors, J. Power Sources, 193, 822, 10.1016/j.jpowsour.2009.04.013
Xiao, 2015, Preparation of high performance lithium-ion batteries with a separator-cathode assembly, RSC Adv., 5, 34184, 10.1039/C5RA03769G
Zhao, 2013, Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon, J. Alloy. Compd., 566, 206, 10.1016/j.jallcom.2013.03.041
Ohno, 2005, Electrochemical Aspects of Ionic Liquids, 10.1002/0471762512
Guo, 2011, Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy, Electrochim. Acta, 56, 3981, 10.1016/j.electacta.2011.02.014