Iron oxide/poly (vinylidene fluoride-hexafluoropropylene) membranes for lithium-ion battery separator and arsenic removal applications

Journal of Environmental Chemical Engineering - Tập 11 - Trang 111371 - 2023
J.P. Serra1, H. Salazar2, A. Fidalgo-Marijuan3,4, R. Gonçalves5, P.M. Martins6,7, S. Lanceros-Mendez3,8, C.M. Costa1,7,9
1Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
2
3BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
4Depatrment of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
5Centre of Chemistry, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
6Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
7Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
8IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
9Laboratory of Physics for Materials and Emergent Technologies, LapMET, Portugal

Tài liệu tham khảo

Agbedahin, 2019, Sustainable development, Education for Sustainable Development, and the 2030 Agenda for Sustainable Development: Emergence, efficacy, eminence, and future, Sustain. Dev., 27, 669, 10.1002/sd.1931 WHO/UNICEF. Progress on household drinking water, sanitation and hygiene 2000–2017: Special focus on inequalities, 2019. (accessed 2021 12/02/2021). Cancer, 1994, IARC monographs on evaluating carcinogenic risk to humans: some industrial chemicals, IARC Monogr. Eval. Carcinog. risk Hum.: some Ind. Chem. Song, 2006, Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite, Water Res., 40, 364, 10.1016/j.watres.2005.09.046 da Silva, 2018, Arsenic removal from As-hyperaccumulator Pteris vittata biomass: coupling extraction with precipitation, Chemosphere, 193, 288, 10.1016/j.chemosphere.2017.10.116 Sandhi, 2018, Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans), Environ. Pollut., 237, 1098, 10.1016/j.envpol.2017.11.038 Zhang, 2018, Heterogeneous Fenton decontamination of organoarsenicals and simultaneous adsorption of released arsenic with reduced secondary pollution, Chem. Eng. J., 344, 1, 10.1016/j.cej.2018.03.072 Salazar, H.; Martins, P.M.; Valverde, A.; Fernández de Luis, R.; Vilas-Vilela, J.L.; Ferdov, S.; Botelho, G.; Lanceros-Mendez, S. Reusable Nanocomposite Membranes for Highly Efficient Arsenite and Arsenate Dual Removal from Water. Advanced Materials Interfaces n/a (n/a), 2101419. DOI: https://doi.org/10.1002/admi.202101419. Goswami, 2012, Arsenic adsorption using copper (II) oxide nanoparticles, Chem. Eng. Res. Des., 90, 1387, 10.1016/j.cherd.2011.12.006 Foroutan, 2019, Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents, Environ. Sci. Pollut. Res., 26, 29748, 10.1007/s11356-019-06070-5 Salazar, 2016, Poly(vinylidene fluoride-hexafluoropropylene)/bayerite composite membranes for efficient arsenic removal from water, Mater. Chem. Phys., 183, 430, 10.1016/j.matchemphys.2016.08.049 Zhu, 2018, Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: adsorption mechanism study and application to a lab-scale column, J. Environ. Manag., 211, 73, 10.1016/j.jenvman.2018.01.049 Sherlala, 2019, Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite, J. Environ. Manag., 246, 547, 10.1016/j.jenvman.2019.05.117 Nguyen, 2009, Arsenic removal by a membrane hybrid filtration system, Desalination, 236, 363, 10.1016/j.desal.2007.10.088 Seibel, 2021, End-of-life reverse osmosis membranes: Recycle procedure and its applications for the treatment of brackish and surface water, J. Appl. Res. Water Wastewater, 8, 77 Pontié, 2015, Old RO membranes: solutions for reuse, Desalin. Water Treat., 53, 1492, 10.1080/19443994.2014.943060 Stephan, 2009, ELECTROLYTES | Gel, 140 Choi, 2010 Balbuena, 2004 Abraham, 1995, Polymer Electrolytes Reinforced by Celgard® Membranes, J. Electrochem. Soc., 142, 683, 10.1149/1.2048517 Chen, 2023, Unified throughout-pore microstructure enables ultrahigh separator porosity for robust high-flux lithium batteries, Electron, 1, 10.1002/elt2.1 Arora, 2004, Battery separators, Chem. Rev., 104, 4419, 10.1021/cr020738u Costa, 2012, Effect of the microsctructure and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/lithium perchlorate trihydrate composite membranes for battery applications, Solid State Ion., 217, 19, 10.1016/j.ssi.2012.04.011 Chung, 2009, Enhancement of meltdown temperature of the polyethylene lithium-ion battery separator via surface coating with polymers having high thermal resistance, Ind. Eng. Chem. Res., 48, 4346, 10.1021/ie900096z Tang, 2022, Three-phase interface photocatalysis for the enhanced degradation and antibacterial property, J. Colloid Interface Sci., 612, 194, 10.1016/j.jcis.2021.12.072 Venugopal, 1999, Characterization of microporous separators for lithium-ion batteries, J. Power Sources, 77, 34, 10.1016/S0378-7753(98)00168-2 Moura, 2022, Adsorption of cyanotoxins on polypropylene and polyethylene terephthalate: Microplastics as vector of eight microcystin analogues, Environ. Pollut., 303, 10.1016/j.envpol.2022.119135 Choi, 1998, Lithium ion conduction in PEO-salt electrolytes gelled with PAN, Solid State Ion., 123–127, 113 Kang, 2001, Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries, J. Power Sources, 92, 255, 10.1016/S0378-7753(00)00546-2 Bernhardt, 2021, Tunable photocatalytic activity of PEO-stabilized ZnO–polyoxometalate nanostructures in aqueous solution, Adv. Mater. Interfaces, 8, 10.1002/admi.202002130 Ding, 2022, Piezo-photocatalytic flexible PAN/TiO2 composite nanofibers for environmental remediation, Sci. Total Environ., 824 Djian, 2009, Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity, J. Power Sources, 187, 575, 10.1016/j.jpowsour.2008.11.027 Costa, 2012, Electroactive Poly(Vinylidene Fluoride-Trifluorethylene) (PVDF-TrFE) Microporous Membranes for Lithium-Ion Battery Applications, Ferroelectrics, 430, 103, 10.1080/00150193.2012.677729 Costa, 2012, Effect of degree of porosity on the properties of poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators, J. Membr. Sci., 8, 407 Martins, 2019, Photocatalytic microporous membrane against the increasing problem of water emerging pollutants, Materials, 12, 10.3390/ma12101649 Salazar, 2022, Reusable nanocomposite membranes for highly efficient arsenite and arsenate dual removal from water, Adv. Mater. Interfaces, 9, 2101419, 10.1002/admi.202101419 Saunier, 2004, Plasticized microporous poly(vinylidene fluoride) separators for lithium-ion batteries. III. Gel properties and irreversible modifications of poly(vinylidene fluoride) membranes under swelling in liquid electrolytes, J. Polym. Sci. Part B: Polym. Phys., 42, 2308, 10.1002/polb.20099 Nakajima, 2005, Fluor. Mater. Energy Convers.; Elsevier Seeram Ramakrishna, 2005 Zhu, 2020, Magnetic and mesoporous Fe3O4-modified glass fiber separator for high-performance lithium-sulfur battery, Ionics, 26, 2325, 10.1007/s11581-019-03350-5 MacArthur, 2013, Towards the circular economy, economic and business rationale for an accelerated transition, Ellen. MacArthur Found.: Cowes, UK, 21 Sassanelli, 2019, Circular economy performance assessment methods: A systematic literature review, J. Clean. Prod., 229, 440, 10.1016/j.jclepro.2019.05.019 Cao, 2018, Efficient reuse of anode scrap from lithium-ion batteries as cathode for pollutant degradation in electro-Fenton process: Role of different recovery processes, Chem. Eng. J., 337, 256, 10.1016/j.cej.2017.12.104 Guo, 2020, Efficient degradation of industrial pollutants with sulfur (IV) mediated by LiCoO2 cathode powders of spent lithium ion batteries: A “treating waste with waste” strategy, J. Hazard. Mater., 399, 10.1016/j.jhazmat.2020.123090 Serra, 2021, Porous composite bifunctional membranes for lithium-ion battery separator and photocatalytic degradation applications: toward multifunctionality for circular economy, Adv. Energy Sustain. Res., 2, 2100046, 10.1002/aesr.202100046 Salazar, 2015, Poly(vinylidene fluoride-trifluoroethylene)/NAY zeolite hybrid membranes as a drug release platform applied to ibuprofen release, Colloids Surf. A: Physicochem. Eng. Asp., 469, 93, 10.1016/j.colsurfa.2014.12.064 Salazar, H.; Martins, P.M.; Valverde, A.; de Luis, R.F.; Vilas-Vilela, J.L.; Ferdov, S.; Botelho, G.; Lanceros-Mendez, S. Reusable Nanocomposite Membranes for Highly Efficient Arsenite and Arsenate Dual Removal from Water. Advanced Materials Interfaces, 2021, n/a (n/a), 2101419, https://doi.org/10.1002/admi.202101419. DOI: Artn 210141910.1002/Admi.202101419 (acccessed 2021/11/22). Giri, 2022, Sustainable removal of arsenic from simulated wastewater using solid waste seed pods biosorbents of Cassia fistula L, Chemosphere, 287, 10.1016/j.chemosphere.2021.132308 Lima, 2022, V. G. S. Sorption of arsenic by composts and biochars derived from the organic fraction of municipal solid wastes: Kinetic, isotherm and oral bioaccessibility study, Environ. Res., 204, 10.1016/j.envres.2021.111988 Martinez–Vargas, 2021, As(III) adsorption on co-precipitated cobalt substituted ferrite nanoparticles, J. Magn. Magn. Mater., 539, 10.1016/j.jmmm.2021.168389 Hua, 2018, Adsorption of low-concentration arsenic from water by co-modified bentonite with manganese oxides and poly(dimethyldiallylammonium chloride), J. Environ. Chem. Eng., 6, 156, 10.1016/j.jece.2017.11.062 Gupta, 2021, Improved arsenite adsorption using iron-impregnated marble dust with surface functionalized by quaternary ammonium ions, Int. J. Environ. Sci. Technol., 18, 2955, 10.1007/s13762-020-03013-3 Pak, 2021, Adsorptive removal of arsenic and lead by stone powder/chitosan/maghemite composite beads, Int. J. Environ. Res. Public Health, 18, 10.3390/ijerph18168808 Yew, 2016, Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract, Nanoscale Res. Lett., 11, 276, 10.1186/s11671-016-1498-2 Sousa, 2014, Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties, Polym. Test., 40, 245, 10.1016/j.polymertesting.2014.09.012 Wong, 2017, Predictive design, etch-free fabrication of through-hole membrane with ordered pores and hierarchical layer structure, Adv. Mater. Technol., 2, 1600169, 10.1002/admt.201600169 Martins, 2014, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications, Prog. Polym. Sci., 39, 683, 10.1016/j.progpolymsci.2013.07.006 Scopus. Salimi, 2003, Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films, Polym. Test., 22, 699, 10.1016/S0142-9418(03)00003-5 Barbosa, 2021, High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride-co-hexafluoropropylene) Combining Ionic Liquid and Zeolite, ACS Appl. Mater. Interfaces, 13, 48889, 10.1021/acsami.1c15209 Gsaiz, 2018, Ionic liquids for the control of the morphology in poly(vinylidene fluoride-co-hexafluoropropylene) membranes, Mater. Des., 155, 325, 10.1016/j.matdes.2018.06.013 Chen, 2021, Efficient degradation of roxarsone and simultaneous in-situ adsorption of secondary inorganic arsenic by a combination of Co3O4-Y2O3 and peroxymonosulfate, J. Hazard. Mater., 407, 10.1016/j.jhazmat.2020.124559 Moreira, 2021, Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes, Process Saf. Environ. Prot., 148, 604, 10.1016/j.psep.2020.11.033 Revellame, 2020, Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review, Clean. Eng. Technol., 1 Choong, 2021, Granular Mg-Fe layered double hydroxide prepared using dual polymers: Insights into synergistic removal of As(III) and As(V, J. Hazard. Mater., 403, 10.1016/j.jhazmat.2020.123883 D, 2012, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn 2+ Unto Phosphoric Acid Modified Rice Husk, J. Appl. Chem., 3, 38 Zhang, 2019, Amorphous Fe/Mn bimetal–organic frameworks: outer and inner structural designs for efficient arsenic(iii) removal, J. Mater. Chem. A, 7, 10.1039/C8TA10394A Yang, 2022, Synergistic removal of As(V) from aqueous solution by nanozero valent iron loaded with zeolite 5A synthesized from fly ash, J. Hazard. Mater., 424, 10.1016/j.jhazmat.2021.127428 Xie, 2022, Arsenic removal by manganese-doped mesoporous iron oxides from groundwater: Performance and mechanism, Sci. Total Environ., 806, 10.1016/j.scitotenv.2021.150615 Lin, 2022, Bimetallic Fe/Ni nanoparticles derived from green synthesis for the removal of arsenic (V) in mine wastewater, J. Environ. Manag., 301, 10.1016/j.jenvman.2021.113838 Edjah, 2021, The use of statistical methods to assess groundwater contamination in the Lower Tano river basin, Ghana, West Africa, Environ. Monit. Assess., 193, 10.1007/s10661-021-09514-z Scopus. Rahaman, 2021, Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management, Environ. Pollut., 289 Rodríguez-Carrillo, 2022, Exploring the relationship between metal exposure, BDNF, and behavior in adolescent males, Int. J. Hyg. Environ. Health, 239, 10.1016/j.ijheh.2021.113877 Gören, 2015, Effect of the degree of porosity on the performance of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium-ion battery separators, Solid State Ion., 280, 1, 10.1016/j.ssi.2015.08.003 Chang, 2010, Electrochemical impedance spectroscopy, Annu. Rev. Anal. Chem., 3, 207, 10.1146/annurev.anchem.012809.102211 Macdonald, 1992, Impedance spectroscopy, Ann. Biomed. Eng., 20, 289, 10.1007/BF02368532 Yang, 2016, How to make lithium iron phosphate better: a review exploring classical modification approaches in-depth and proposing future optimization methods, J. Mater. Chem. A, 4, 18210, 10.1039/C6TA05048D Nien, 2009, Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors, J. Power Sources, 193, 822, 10.1016/j.jpowsour.2009.04.013 Xiao, 2015, Preparation of high performance lithium-ion batteries with a separator-cathode assembly, RSC Adv., 5, 34184, 10.1039/C5RA03769G Zhao, 2013, Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon, J. Alloy. Compd., 566, 206, 10.1016/j.jallcom.2013.03.041 Ohno, 2005, Electrochemical Aspects of Ionic Liquids, 10.1002/0471762512 Guo, 2011, Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy, Electrochim. Acta, 56, 3981, 10.1016/j.electacta.2011.02.014