Iron oxide MR contrast agents for molecular and cellular imaging

NMR in Biomedicine - Tập 17 Số 7 - Trang 484-499 - 2004
Jeff W. M. Bulte1,2, Dara L. Kraitchman1
1Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

Tóm tắt

AbstractMolecular and cellular MR imaging is a rapidly growing field that aims to visualize targeted macromolecules or cells in living organisms. In order to provide a different signal intensity of the target, gadolinium‐based MR contrast agents can be employed although they suffer from an inherent high threshold of detectability. Superparamagnetic iron oxide (SPIO) particles can be detected at micromolar concentrations of iron, and offer sufficient sensitivity for T2(*)‐weighted imaging. Over the past two decades, biocompatible particles have been linked to specific ligands for molecular imaging. However, due to their relatively large size and clearance by the reticuloendothelial system (RES), widespread biomedical molecular applications have yet to be implemented and few studies have been reproduced between different laboratories. SPIO‐based cellular imaging, on the other hand, has now become an established technique to label and detect the cells of interest. Imaging of macrophage activity was the initial and still is the most significant application, in particular for tumor staging of the liver and lymph nodes, with several products either approved or in clinical trials. The ability to now also label non‐phagocytic cells in culture using derivatized particles, followed by transplantation or transfusion in living organisms, has led to an active research interest to monitor the cellular biodistribution in vivo including cell migration and trafficking. While most of these studies to date have been mere of the ‘proof‐of‐principle’ type, further exploitation of this technique will be aimed at obtaining a deeper insight into the dynamics of in vivo cell biology, including lymphocyte trafficking, and at monitoring therapies that are based on the use of stem cells and progenitors. Copyright © 2004 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1126/science.1090585

10.1002/mrm.1910030218

10.1016/0730-725X(86)90054-8

10.1002/mrm.1910030205

1985 Raven Press New York GL Wolf KR Burnett EJ Goldstein PM Joseph H Kressel Magnetic Resonance Annual 231 266

10.1126/science.1636086

10.1002/jmri.1880040343

10.1016/S1076-6332(05)80064-9

10.1038/nbt1201-1141

10.1021/cm010125i

10.1016/0730-725X(90)90143-P

10.1148/radiology.177.3.2243978

10.1097/01.rli.0000101027.57021.28

10.1016/0730-725X(93)90074-N

10.1073/pnas.76.7.3392

Sanderson CJ, 1971, A simple method for coupling proteins to insoluble polysaccharides, Immunology, 20, 1061

10.1148/radiology.181.1.1887040

10.1148/radiology.182.2.1732953

Remsen LG, 1996, MR of carcinoma‐specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles: the potential for noninvasive diagnosis, Am. J. Neuroradiol., 17, 411

Bulte JWM, 1998, Magnetoimmunodetection of (transfected) ICAM‐1 gene expression, Proc. Int. Soc. Magn. Reson. Med., 6, 307

10.1073/pnas.96.26.15256

10.1038/nm1101-1241

10.1016/0730-725X(86)91045-3

10.1002/mrm.1910120202

10.1002/(SICI)1097-0215(19980209)75:4<626::AID-IJC22>3.0.CO;2-5

Artemov D, 2003, Magnetic resonance molecular imaging of the HER‐2/neu receptor, Cancer Res., 63, 2723

10.1002/mrm.1910250115

10.1021/bc00023a007

10.1016/0730-725X(95)02106-4

10.1148/radiology.193.2.7972773

10.1021/bc960003u

10.1038/sj.neo.7900266

10.1016/S0167-4889(98)00002-0

10.1038/73219

10.1002/mrm.1910400209

10.1002/mrm.10529

10.1073/pnas.97.26.14268

10.1002/1521-3773(20010903)40:17<3204::AID-ANIE3204>3.0.CO;2-H

10.1158/0008-5472.CAN-03-2798

10.1038/nbt720

10.1021/ja036409g

10.1021/nl034983k

10.1148/radiology.168.2.3393649

10.1148/radiology.193.3.7972790

10.1056/NEJMoa022749

10.1148/radiology.175.2.2326475

10.1148/radiology.191.1.8134576

10.1148/radiology.179.2.2014305

10.1002/(SICI)1097-4547(19980601)52:5<549::AID-JNR7>3.0.CO;2-C

Dousset V, 1999, Comparison of ultrasmall particles of iron oxide (USPIO)‐enhanced T 2‐weighted, conventional T 2‐weighted, and gadolinium‐enhanced T 1‐weighted MR images in rats with experimental autoimmune encephalomyelitis, Am. J. Neuroradiol., 20, 223

10.1002/(SICI)1522-2594(199902)41:2<329::AID-MRM17>3.0.CO;2-Z

10.1002/mrm.10541

10.1097/01.WCB.0000090505.76664.DB

10.1002/nbm.770

10.1002/mrm.1290

10.1002/(SICI)1522-2594(199901)41:1<156::AID-MRM22>3.0.CO;2-C

10.1148/radiology.217.3.r00dc04819

10.1046/j.1523-1755.2003.00048.x

10.1002/mrm.10480

Kresse M, 1998, MR plaque imaging using superparamagnetic iron oxide particles, Proc Int. Soc. Magn. Reson. Med., 633

10.1161/01.CIR.103.3.415

10.1161/01.CIR.0000055323.57885.88

10.1002/jmri.1194

10.1161/01.CIR.0000068315.98705.CC

10.1002/mrm.10387

10.1046/j.1523-1755.2000.00286.x

10.1067/mtc.2000.110184

10.1161/hc3401.093148

Ghosh P, 1990, NMR imaging of transplanted iron oxide‐labelled cells in the rat brain, Proc. Soc. Magn. Reson. Med., 9, 1193

10.1006/exnr.1993.1085

10.1016/0006-8993(92)91135-2

10.1002/mrm.1910290108

10.1097/00004424-199206000-00009

10.1002/mrm.1910300513

10.1016/S0730-725X(99)00085-5

10.1002/jnr.10693

10.1002/jmri.1880070629

10.1002/jmri.1880070140

10.1097/00001756-199912160-00043

10.3727/000000003108747352

10.1016/S1076-6332(96)80564-2

10.1021/bc980125h

10.1038/74464

10.1097/01.TP.0000090164.42732.47

10.1016/S0022-1759(01)00433-1

10.1021/bc0255236

10.1038/312162a0

10.1002/mrm.10511

10.1148/radiol.2283020322

10.1148/radiol.2211001784

10.1016/j.ijpharm.2003.09.042

10.1002/mrm.10465

Bryant LH, 2001, Focus on Biotechnology: Physics and Chemistry Basis of Biotechnology

10.1073/pnas.93.10.4897

10.1021/bc9600630

10.1021/bc000018z

Bulte JWM, 2001, Cellular imaging using magnetodendrimers: application to human stem cells and neoplastic cells In vivo, Proc. Int. Soc. Magn. Reson. Med., 9, 52

Bulte JWM, 2001, 3D MR tracking of magnetically labeled embryonic stem cells transplanted in the contusion injured rat spinal cord, Proc. Int. Soc. Magn. Reson. Med., 9, 130

Hakumaki JM, 2004, Magnetic resonance imaging of murine EG‐derived neural stem cells in mouse lower motor neuron paralysis, Proc. Int. Soc. Magn. Reson. Med., 12

Hakumaki JM, 2001, MRI detection of labeled neural progenitor cells in a mouse model of Parkinson's disease, Dev. Brain Res., 132, A43

10.1016/j.expneurol.2004.02.007

10.1002/mrm.10684

10.1002/mrm.10418

10.1016/S0142-9612(02)00440-4

10.1021/la0257337

10.1007/s00249-003-0312-0

10.1148/radiol.2281020638

10.1016/S1076-6332(03)80271-4

10.1073/pnas.242435499

10.1002/mrm.10556

10.1002/ana.20066

Cahill KS, 2003, Noninvasive monitoring and tracking of muscle stem cells, Proc. Int. Soc. Magn. Reson. Med., 11, 368

10.1161/01.CIR.0000070931.62772.4E

10.1148/radiol.2293021215

10.1002/nbm.925

10.1016/S0306-4522(02)00696-6

10.1002/ana.10467

Dick AJ, 2003, Real‐time MRI enables targeted injection of labeled stem cells to the border of recent porcine myocardial infarction based on functional and tissue characteristics, Proc. Int. Soc. Magn. Reson. Med., 11, 365

10.1161/01.CIR.0000084537.66419.7A

Sorger JM, 2003, MRI tracking of stem cell homing to myocardial infarction, Proc. Int. Soc. Magn. Reson. Med., 11, 364

10.1182/blood-2002-12-3669

10.1073/pnas.0403918101

10.1016/S0006-3495(99)77182-1

Majors PD, 2002, MR microscopy of magnetodendrimer uptake in single cells, Proc. Int. Soc. Magn. Reson. Med., 10, 2571

10.1002/mrm.10417

Heyn C, 2003, Single cell detection with FIESTA: effect of iron loading and distribution, Proc. Int. Soc. Magn. Reson. Med., 11, 805

Turnbull DH, 2001, In vivo MR micro‐imaging of neuronal migration in the mouse brain, Proc. Int. Soc. Magn. Reson. Med., 9, 359

10.1002/glia.10159

Ben‐Hur T, 2004, In vivo MR tracking of magnetically labeled neural spheres transplanted in chronic EAE mice: relation between cell migration and inflammation, Proc. Int. Soc. Magn. Reson. Med., 12, 159

Savitt JM, 2002, Transplantation of differentiated human embryonic germ cells rescues apomorphine‐induced rotation in a mouse model of Parkinson's disease, Movement Disord., 17, 694

10.1002/mrm.10585

Kraitchman DL, 2003, In vivo MR delivery and tracking of mesenchymal stem cells in myocardial infraction, Proc. Int. Soc. Magn. Reson. Med., 11, 360

10.1002/jor.1100090504

10.1002/mrm.20086

10.1161/circ.105.11.1282

Bos C, In vivo MR imaging of intravascularly‐injected Endorem‐labeled mesenchymal stem cells in kidney and liver, Radiology

10.1002/mrm.1910330209

10.2144/98244rr01

Beuf O, 2003, Magnetic labeled T cells In vivo tracking using MRI, Proc. Int. Soc. Magn. Reson. Med., 11, 828

10.1002/mrm.10110

Kircher MF, 2003, In vivo high resolution three‐dimensional imaging of antigen‐specific cytotoxic T‐lymphocyte trafficking to tumors, Cancer Res., 63, 6838

Gimi B, 2004, Tracking of endothelial cell response to angiogenic factors using a T 2‐weighted intracellular contrast agent, Proc. Int. Soc. Magn. Reson. Med., 12, 1705

Anderson SA, 2004, Non invasive MR imaging of magnetically labelled stem cells to directly identify neovasculature in a glioma model, Blood, 104

Coristine A, 2004, Positive contrast labelling of SPIO loaded cells in cell samples and spinal cord injury, Proc. Int. Soc. Magn. Reson. Med., 12, 163