Tổng hợp ionotermal và hiệu suất điện hóa được nâng cao của Cr-doped LiMn2O4 có cấu trúc nano cho pin lithium-ion

Ionics - Tập 21 - Trang 1517-1523 - 2014
Xueliang Li1,2, Qiao Zhou1,2, Hongliu Wang1,2, Shuai Liu1,2
1School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, People’s Republic of China
2Anhui Key Laboratory of Controllable Chemical Reaction and Material Chemistry and Chemical Engineering, Hefei, People’s Republic of China

Tóm tắt

Các vật liệu LiCr x Mn2−x O4 (x = 0, 0.02, 0.05, 0.12) đã được tổng hợp hiệu quả bằng dung dịch ionic dựa trên imidazolium làm môi trường phản ứng ở áp suất môi trường. Hình thái của LiMn2O4 được dop Cr qua quá trình thiêu kết đã được phân tích bằng kính hiển vi điện tử quét (SEM). SEM cho thấy mẫu LiCr0.12Mn1.88O4 có cấu trúc nano đồng đều và kích thước hạt đồng nhất từ 50–100 nm. Trong bốn mẫu được chuẩn bị trong dung dịch ionic, các thử nghiệm sạc/xả chỉ ra rằng LiCr0.12Mn1.88O4 có hiệu suất tốt nhất về khả năng tỷ lệ và độ ổn định chu kỳ. Một mẫu điển hình của LiCr0.12Mn1.88O4 đạt được dung lượng xả ban đầu là 129.6 mAh g−1 và giảm dung lượng khá chậm với 96.8% dung lượng ban đầu còn lại sau 200 chu kỳ tại 0.5 C trong dải điện áp 3.4–4.3 V. Hiệu suất điện hóa được cải thiện có thể được quy cho việc dop Cr và phương pháp ionothermal có thể tái chế. Hơn nữa, việc tổng hợp ionothermal này được tin là cung cấp một lộ trình phản ứng mới cho các vật liệu pin lithium-ion với điều kiện phản ứng nhẹ nhàng.

Từ khóa

#LiCr x Mn2−x O4 #lithium-ion batteries #ionothermal synthesis #electrochemical performance #Cr doping

Tài liệu tham khảo

He L, Zhang S, Wei X, Du Z, Liu G, Xing Y (2012) Synthesis and electrochemical performance of spinel-type LiMn2O4 using γ-MnOOH rods as self-template for lithium ion battery. J Power Sources 220:228–235 Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377 Meng H, Huang B, Yin J, Yao X, Xu X (2014) Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathodes in lithium-ion and all-solid-state lithium batteries. Ionics. doi:10.1007/s11581-014-1152-x Fey GTK, Lu CZ, Prem Kumar T (2003) Solid-state synthesis and electrochemical characterization of LiMyCr0.5-yMn1.5O4(M = Fe or Al; 0.0 < y < 0.4) spinels. Mater Chem Phys 80:309–318 Wang J, Zhang Q, Li X, Wang Z, Zhang K, Guo H, Yan G, Huang B, He Z (2013) A graphite functional layer covering the surface of LiMn2O4 electrode to improve its electrochemical performance. Electrochem Commun 36:6–9 Wang J, Zhang Q, Li X, Wang Z, Guo H, Xu D, Zhang K (2014) Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode. Phys Chem Chem Phys 16:16021–16029 Zhou WJ, Bao SJ, He BL, Liang YY, Li HL (2006) Synthesis and electrochemical properties of LiAl0.05Mn1.95O4 by the ultrasonic assisted rheological phase method. Electrochim Acta 51:4701–4708 Wang J, Li Z, Yang J, Tang J, Yu J, Nie W, Lei G, Xiao Q (2012) Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries. Electrochim Acta 75:115–122 Deng B, Nakamura H, Yoshio M (2008) Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures. J Power Sources 180:864–868 Manthiram A, Murugan AV, Sarkar A, Muraliganth T (2008) Nanostructured electrode materials for electrochemical energy storage and conversion. Energ Environ Sci 1:621–638 Matsuda K, Taniguchi I (2004) Relationship between the electrochemical and particle properties of LiMn2 O4 prepared by ultrasonic spray pyrolysis. J Power Sources 132:156–160 Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195:5442–5451 Kakuda T, Uematsu K, Toda K, Sato M (2007) Electrochemical performance of Al-doped LiMn2O4 prepared by different methods in solid-state reaction. J Power Sources 167:499–503 Choi HJ, Lee KM, Kim GH, Lee JG (2001) Mechanochemical synthesis and electrochemical properties of LiMn2O4. J Am Ceram Soc 84:242–244 Hwang B, Santhanam R, Liu D (2001) Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method. J Power Sources 97:443–446 Mao F, Wu D, Zhou Z, Wang S (2014) Structural and electrochemical properties of LiFe1- 3x/2Bi x PO4/C synthesized by sol-gel. Ionics 20:1665–1669 Song MY, Kwon IH, Park HR, Mumm DR (2011) Electrochemical properties of LiCoyMn2- yO4 synthesized using a combustion method in a voltage range of 3.5-5.0 V. Ceram Int 37:2215–2220 Jiang C, Dou S, Liu H, Ichihara M, Zhou H (2007) Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. J Power Sources 172:410–415 Recham N, Dupont L, Courty M, Djellab K, Larcher D, Armand M, Tarascon JM (2009) Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chem Mater 21:1096–1107 Liu J, Liu X, Kong X, Zhang H (2012) Controlled synthesis, formation mechanism and upconversion luminescence of NaYF4:Yb, Er nano-/submicrocrystals via ionothermal approach. J Solid State Chem 190:98–103 Li XL, Chen JJ, Luo M, Chen XY, Li PP (2010) Quantum chemical calculation of hydroxyalkyl ammonium functionalized ionic liquids for absorbing SO2. Acta Phys -Chim Sin 26:1364–1372 Li XL, He WX, Xiao ZH, Peng FF, Chen JJ (2013) Ionothermal synthesis and rate performance studies of nanostructured Li3V2(PO4)3/C composites as cathode materials for lithium-ion batteries. J Solid State Electrochem 17:1991–2000 Li XL, Guo W, Liu YF, He WX, Xiao ZH (2014) Spinel LiNi0.5Mn1.5O4 as superior electrode materials for lithium-ion batteries: ionic liquid assisted synthesis and the effect of CuO coating. Electrochim Acta 116:278–283 Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim DK (2010) Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett 10:3852–3856 Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952 Xiao L, Zhao Y, Yang Y, Cao Y, Ai X, Yang H (2008) Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method. Electrochim Acta 54:545–550 Yang Y, Xie C, Ruffo R, Peng H, Kim DK, Cui Y (2009) Single nanorod devices for battery diagnostics: a case study on LiMn2O4. Nano Lett 9:4109–4114 Yao J, Lv L, Shen C, Zhang P, Aguey-Zinsou KF, Wang L (2013) Nano-sized spinel LiMn2O4 powder fabricated via modified dynamic hydrothermal synthesis. Ceram Int 39:3359–3364 Xia Y, Zhang W, Huang H, Gan Y, Li C, Tao X (2011) Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. Mater Sci Eng B 176:633–639 Qiao Y, Tu J, Wang X, Zhang J, Yu Y, Gu C (2011) Self-assembled synthesis of hierarchical waferlike porous Li-V-O composites as cathode materials for lithium ion batteries. J Phys Chem C 115:25508–25518 Xiang J, Tu J, Zhang L, Wang X, Zhou Y, Qiao Y, Lu Y (2010) Improved electrochemical performances of 9LiFePO(4) center dot Li3V2(PO4)/C composite prepared by a simple solid-state method. J Power Sources 195:8331–8335 Huang J, Yang L, Liu K, Tang Y (2010) Synthesis and characterization of Li3V(2- 2x/3)Mgx(PO4)3/C cathode material for lithium-ion batteries. J Power Sources 195:5013–5018 Sehrawat R, Sil A (2014) Polymer gel combustion synthesis of LiFePO4/C composite as cathode material for Li-ion battery. Ionics. doi:10.1007/s11581-014-1229-6 Yao J, Shen C, Zhang P, Ma CA, Gregory DH, Wang L (2013) Spinel-Li3.5+xTi5O12 coated LiMn2O4 with high surface Mn valence for an enhanced cycling performance at high temperature. Electrochem Commun 31:92–95 Jiang RY, Cui CY, Ma HY (2013) Poly(vinyl pyrrolidone)-assisted hydrothermal synthesis of LiMn2O4 nanoparticles with excellent rate performance. Mater Lett 91:12–15