Ionic work functions of alkali aluminosilicates – Correlations with structural and energetic landscapes

International Journal of Mass Spectrometry - Tập 435 - Trang 291-297 - 2019
S. Schuld1, B. Harbrecht1, K.-M. Weitzel1
1Philipps-Universität Marburg, Fachbereich Chemie, 35032 Marburg, Germany

Tài liệu tham khảo

Park, 2012 Daniel, 2011 2004, Vol 104 Nitta, 2015, Li-ion battery materials. Present and future, Mater. Today, 18, 252, 10.1016/j.mattod.2014.10.040 Slater, 2013, Sodium-ion batteries, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691 Wu, 2017, Emerging non-aqueous potassium-ion batteries: challenges and opportunities, Chem. Mater., 29, 5031, 10.1021/acs.chemmater.7b01764 Pongs, 1999, Voltage-gated potassium channels: from hyperexcitability to excitement, FEBS Lett., 452, 31, 10.1016/S0014-5793(99)00535-9 Amaya, 2000, Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2, Mol. Cell. Neurosci., 15, 331, 10.1006/mcne.1999.0828 Ferrari, 2003, Quantitative depth profiling at silicon/silicon oxide interfaces by means of Cs+ sputtering in negative mode by ToF-SIMS: a full spectrum approach, Appl. Surf. Sci., 203-204, 52, 10.1016/S0169-4332(02)00655-4 Ruff, 2007, A Gas Ion Source for Radiocarbon Measurements at 200 kV, Radiocarbon, 49, 307, 10.1017/S0033822200042235 Tuller, 1980, Fast ion transport in oxide glasses, J. Non-Cryst. Solids, 40, 93, 10.1016/0022-3093(80)90096-4 Goodenough, 1976, Fast Na+-ion transport in skeleton structures, Mater. Res. Bull., 11, 203, 10.1016/0025-5408(76)90077-5 Maass, 1992, Ion transport anomalies in glasses, Phys. Rev. Lett., 68, 3064, 10.1103/PhysRevLett.68.3064 Marom, 2011, A review of advanced and practical lithium battery materials, J. Mater. Chem., 21, 9938, 10.1039/c0jm04225k Rodrı́guez-Navarro, 2000, Potassium transport in fungi and plants, Biochim. Biophys. Acta (BBA) – Rev. Biomembr., 1469, 1, 10.1016/S0304-4157(99)00013-1 Bonanos, 1995, Perovskite solid electrolytes: structure, transport properties and fuel cell applications, Solid State Ion., 79, 161, 10.1016/0167-2738(95)00056-C Schäfer, 2011, Bombardment induced ion transport. Part I: numerical investigation of bombardment induced ion transport through glasses and membranes on the basis of the Nernst-Planck-Poisson equations, Phys. Chem. Chem. Phys., 13, 20112, 10.1039/c1cp21215j Menezes, 2011, Bombardment induced ion transport--part II. Experimental potassium ion conductivities in borosilicate glass, Phys. Chem. Chem. Phys., 13, 20123, 10.1039/c1cp21216h Martin, 2017, Charge attachment induced transport - bulk and grain boundary diffusion of potassium in PrMnO3, Phys. Chem. Chem. Phys., 19, 9762, 10.1039/C7CP00198C Fawcett, 2008, The ionic work function and its role in estimating absolute electrode potentials, Langmuir, 24, 9868, 10.1021/la7038976 Schuld, 2018, Experimental studies on work functions of Li + ions and electrons in the battery electrode material LiCoO2: a thermodynamic cycle combining ionic and electronic structure, Adv. Energy Mater., 8, 1703411, 10.1002/aenm.201703411 Richardson, 1921 Dushman, 1930, Thermionic emission, Rev. Mod. Phys., 2, 381, 10.1103/RevModPhys.2.381 Herring, 1949, Thermionic emission, Rev. Mod. Phys., 21, 185, 10.1103/RevModPhys.21.185 Child, 1911, Discharge from hot cao, Phys. Rev. (Series I), 32, 492, 10.1103/PhysRevSeriesI.32.492 Langmuir, 1913, The effect of space charge and residual gases on thermionic currents in high vacuum, Phys. Rev., 2, 450, 10.1103/PhysRev.2.450 Schottky, 1923, Über kalte und warme Elektronenentladungen, Zeitschrift für Physik, 14, 63, 10.1007/BF01340034 Allison, 1961, Lithium ion sources, Rev. Sci. Instrum., 32, 1090, 10.1063/1.1717170 Weber, 1966, Aluminosilicate Alkali ion sources, Rev. Sci. Instrum., 37, 112, 10.1063/1.1719925 Feeney, 1976, Aluminosilicate sources of positive ions for use in collision experiments, Rev. Sci. Instrum., 47, 964, 10.1063/1.1134782 Hughes, 1980, Aluminosilicate‐composite type ion source of alkali ions, Rev. Sci. Instrum., 51, 1471, 10.1063/1.1136127 Satoh, 1987, Emission characteristics of zeolite A ion source, Rev. Sci. Instrum., 58, 138, 10.1063/1.1139544 Hogan, 1992, Characteristics of aluminosilicates as thermionic sources of Na+ and K+ ions, Int. J. Mass Spectrom. Ion Process., 116, 249, 10.1016/0168-1176(92)80043-Z Tan, 1994, Studies of rubidium aluminosilicates as thermionic emitters of Rb+ ions, Int. J. Mass Spectrom. Ion Process., 134, 221, 10.1016/0168-1176(94)03990-9 Ong, 1994, Aluminosilicate sources of Cs + ions, Rev. Sci. Instrum., 65, 3729, 10.1063/1.1144498 Terzic, 1996, A new broad-beam alkali ion source for use in ultra high vacuum, Meas. Sci. Technol., 7, 944, 10.1088/0957-0233/7/6/014 Ueda, 1997, A comparison of the Li+ -emission properties of pasty, liquid and glassy beta-eucryptite ion sources, J. Phys. D Appl. Phys., 30, 2711, 10.1088/0022-3727/30/19/009 Ichikawa, 1999, Thermal emission of alkaline ions from solid electrolyte. Evidence of nonstoichiometric reaction, Chem. Phys. Lett., 313, 129, 10.1016/S0009-2614(99)00954-9 Kolling, 2010, Field effects in alkali ion emitters: transition from Langmuir–Child to Schottky regime, J. Appl. Phys., 107, 14105, 10.1063/1.3273500 Ni, 2011, Li+ ion emission from a hot-plate alumina-silicate source stimulated by flash heating with an infrared laser, Rev. Sci. Instrum., 82, 23304, 10.1063/1.3555334 Roy, 2012, Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources, Rev. Sci. Instrum., 83, 43303, 10.1063/1.4704457 Schuld, 2016, The work function for Li + -ion emission from spodumene: a complete characterization of thermionic emission, J. Appl. Phys., 120, 185102, 10.1063/1.4966943 Pargellis, 1978, Thermionic emission of alkali ions from zeolites, J. Appl. Phys., 49, 4933, 10.1063/1.325529 Blewett, 1936, Filament sources of positive ions, Phys. Rev., 50, 464, 10.1103/PhysRev.50.464 Pillars, 1973, Crystal-structure of Beta Eucryptite as a function of temperature, Am. Minaralogist, 58, 681 Dimitrijevic, 2004, Structural characterization of pure Na-nephelines synthesized by zeolite conversion route, J. Phys. Chem. Solids, 65, 1623, 10.1016/j.jpcs.2004.03.005 Andou, 1984, The renfinement of the structure of synthetic kalsilite, Mineral. J., 12, 153, 10.2465/minerj.12.153 Klaska, 1973, Die Kristallstruktur von RbSiAlO4, Naturwissenschaften, 60, 299, 10.1007/BF00624446 Klaska, 1975, Die Kristallstruktur und die Verzwillingung von RbAlSiO4, Zeitschrift für Kristallographie - Crystalline Materials, 142, 10.1524/zkri.1975.142.3-4.225 Gatta, 2012, Phase stability and thermo-elastic behavior of CsAlSiO4 (ABW): a potential nuclear waste disposal material, Microporous Mesoporous Mater., 163, 147, 10.1016/j.micromeso.2012.07.010 Cameron, 1973, High-temperature crystal chemistry of Acmite, Diopside, Hedenbergite Jadeite, Spodumene and Ureyite, Am. Minaralogist, 58, 594 Dove, 1993, On the role of Al-Si ordering in the cubic tetragonal phase transition of leucite, Am. Minaralogist, 78, 486 Kosorukov, 1986, Sovjet Phys. Crystallogr., 31, 148 Kosorukov, 1986, Kristallografya, 31, 252 Gallagher, 1981, Preparation and X-ray characterization of pollucite (CsAlSi2O6), J. Inorg. Nucl. Chem., 43, 1773, 10.1016/0022-1902(81)80382-X Palmer, 1997, Structural behavior, crystal chemistry, and phase transitions in substituted leucite; high-resolution neutron powder diffraction studies, Am. Minaralogist, 82, 16, 10.2138/am-1997-1-203 Maixner, 2007, X-ray phase analysis in leucite systems, Zeitschrift für Kristallographie, 531, 10.1524/zksu.2007.2007.suppl_26.531 Moiseev, 1970, Ion exchange in alkali aluminosilicate glasses, Glass Technol., 11, 6 Ding, 2017, 24 Gross, 2017, 37 Allan, 2012, 24 1994, Advanced mineralogy Chow, 1967, Thermion emission of alkali ions from impregnated metal matrices, Appl. Phys. Lett., 10, 256, 10.1063/1.1754936 Martin, 2015, Effect of structure and composition on the DC-conductivity in calcium phosphate glasses of the type x CaO⋯(55−x) M2O⋯45 P2O5 (M=Na, K, Rb, Cs), J. Non-Cryst. Solids, 430, 73, 10.1016/j.jnoncrysol.2015.10.004 Kamitsos, 1989, Modifying role of alkali-metal cations in borate glass networks, J. Phys. Chem., 93, 1604, 10.1021/j100341a083 Kamitsos, 1998, Alkali sites in glass, Solid State Ionics, 105, 75, 10.1016/S0167-2738(97)00451-7 Kramida, 2018 Nakayama, 1998, Ionic conductivity of MAlSi2O6(M=Li, Na, K, Rb and Cs) and its application as a potentiometric CO2 gas sensors, Nippon Seramikkusu Kyokai gakujutsu ronbunshi, 106, 715, 10.2109/jcersj.106.715