Ionic liquids synthesis and applications: An overview

Journal of Molecular Liquids - Tập 297 - Trang 112038 - 2020
Sandip K. Singh1, Anthony W. Savoy1
1Chemical and Biological Engineering Department, Montana State University, Bozeman, MT 59717, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Peter, 2000, Ionic liquids—new “solutions” for transition metal catalysis, Angew. Chem. Int. Ed., 39, 3772, 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5

Huang, 2006, Bronsted acidic room temperature ionic liquids derived from N,N-dimethylformamide and similar protophilic amides, Green Chem., 8, 599, 10.1039/B604777G

Fang, 2011, Dicationic ionic liquids as environmentally benign catalysts for biodiesel synthesis, ACS Catal., 1, 42, 10.1021/cs100026q

Cole, 2002, Novel Brønsted acidic ionic liquids and their use as dual solvent−catalysts, J. Am. Chem. Soc., 124, 5962, 10.1021/ja026290w

Kore, 2011, Synthesis and applications of highly efficient, reusable, sulfonic acid group functionalized Brönsted acidic ionic liquid catalysts, Catal. Commun., 12, 1420, 10.1016/j.catcom.2011.05.030

Matsagar, 2015, Bronsted acidic ionic liquid-catalyzed conversion of hemicellulose into sugars, Catal. Sci. Technol., 5, 531, 10.1039/C4CY01047G

Zhang, 2017, Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids, Chem. Rev., 117, 6834, 10.1021/acs.chemrev.6b00457

Singh, 2016, Ionic liquids catalyzed lignin liquefaction: mechanistic studies using TPO-MS, FT-IR, RAMAN and 1D, 2D-HSQC/NOESY NMR, Green Chem., 18, 4098, 10.1039/C6GC00771F

Singh, 2018, Effect of structural properties of organosolv lignins isolated from different rice husks on their liquefaction using acidic ionic liquids, Clean Techn. Environ. Policy, 20, 739, 10.1007/s10098-017-1435-9

Singh, 2018, Understanding interactions between lignin and ionic liquids with experimental and theoretical studies during catalytic depolymerisation, Catal. Today, 309, 98, 10.1016/j.cattod.2017.09.050

Singh, 2019, Solubility of lignin and chitin in ionic liquids and their biomedical applications, Int. J. Biol. Macromol., 132, 265, 10.1016/j.ijbiomac.2019.03.182

Hallett, 2011, Room-temperature ionic liquids: solvents for synthesis and catalysis. 2, Chem. Rev., 111, 3508, 10.1021/cr1003248

Abbott, 2004, Deep eutectic solvents formed between choline chloride and carboxylic acids:versatile alternatives to ionic liquids, J. Am. Chem. Soc., 126, 9142, 10.1021/ja048266j

Olah, 1979, Synthetic methods and reactions. 63. Pyridinium poly(hydrogen fluoride) (30% pyridine-70% hydrogen fluoride): a convenient reagent for organic fluorination reactions, J. Organomet. Chem., 44, 3872, 10.1021/jo01336a027

Yoneda, 1991, The combination of hydrogen fluoride with organic bases as fluorination agents, Tetrahedron, 47, 5329, 10.1016/S0040-4020(01)80970-4

Welton, 1999, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev., 99, 2071, 10.1021/cr980032t

Fox, 2003, Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts, Green Chem., 5, 724, 10.1039/b308444b

Rogers, 2003, Ionic liquids—solvents of the future?, Science, 302, 792, 10.1126/science.1090313

S. Sugden, H. Wilkins, CLXVII.-the parachor and chemical constitution. Part XII. Fused metals and salts, J. Chem. Soc., DOI https://doi.org/10.1039/JR9290001291(1929) 1291–1298.

Lei, 2017, Introduction: ionic liquids, Chem. Rev., 117, 6633, 10.1021/acs.chemrev.7b00246

Q. Zhang, J.n.M. Shreeve, Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry, Chem. Rev., 114 (2014) 10527–10574.

Moniruzzaman, 2010, Activation and stabilization of enzymes in ionic liquids, Org. Biomol. Chem., 8, 2887, 10.1039/b926130c

Vert, 2012, Terminology for biorelated polymers and applications (IUPAC recommendations 2012), Pure Appl. Chem., 377, 10.1351/PAC-REC-10-12-04

Jessop, 2018, Fundamental properties and practical applications of ionic liquids: concluding remarks, Faraday Discuss., 206, 587, 10.1039/C7FD90090B

Trost, 1991, The atom economy—a search for synthetic efficiency, Science, 254, 1471, 10.1126/science.1962206

Sheldon, 2007, The E factor: fifteen years on, Green Chem., 9, 1273, 10.1039/b713736m

Deetlefs, 2010, Assessing the greenness of some typical laboratory ionic liquid preparations, Green Chem., 12, 17, 10.1039/B915049H

Bonhôte, 1996, Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem., 35, 1168, 10.1021/ic951325x

Hoffmann, 2003, Ionic liquids and their heating behaviour during microwave irradiation – a state of the art report and challenge to assessment, Green Chem., 5, 296, 10.1039/B212533A

Martínez-Palou, 2010, Microwave-assisted synthesis using ionic liquids, Mol. Divers., 14, 3, 10.1007/s11030-009-9159-3

Ameta, 2015, Sonochemical synthesis and characterization of imidazolium based ionic liquids: a green pathway, J. Mol. Liq., 211, 934, 10.1016/j.molliq.2015.08.009

Naeimi, 2014, A facile one-pot ultrasound assisted synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by Brønsted acidic ionic liquid (BAIL) under green conditions, J. Ind. Eng. Chem., 20, 1043, 10.1016/j.jiec.2013.06.041

Dadhania, 2017, Ionic liquid promoted facile and green synthesis of 1,8-dioxo-octahydroxanthene derivatives under microwave irradiation, J. Saudi Chem. Soc., 21, S163, 10.1016/j.jscs.2013.12.003

Chiappe, 2010, Synthesis and applications of ionic liquids derived from natural sugars, 177

Jordan, 2016, Synthesis of a series of amino acid derived ionic liquids and tertiary amines: green chemistry metrics including microbial toxicity and preliminary biodegradation data analysis, Green Chem., 18, 4374, 10.1039/C6GC00415F

Harjani, 2010, Sonogashira coupling reactions in biodegradable ionic liquids derived from nicotinic acid, Green Chem., 12, 650, 10.1039/b919394d

e Silva, 2014, Sustainable design for environment-friendly mono and dicationic cholinium-based ionic liquids, Ecotoxicol. Environ. Saf., 108, 302, 10.1016/j.ecoenv.2014.07.003

Azizi, 2014, Greener synthesis of spirooxindole in deep eutectic solvent, J. Mol. Liq., 194, 62, 10.1016/j.molliq.2014.01.009

Amado Alviz, 2017, Comparative life cycle assessment of the use of an ionic liquid ([Bmim]Br) versus a volatile organic solvent in the production of acetylsalicylic acid, J. Clean. Prod., 168, 1614, 10.1016/j.jclepro.2017.02.107

Hospido, 2019, Life cycle assessment (LCA) of ionic liquids, 1

Zhang, 2008, Life cycle assessment of an ionic liquid versus molecular solvents and their applications, Environ. Sci. Technol., 42, 1724, 10.1021/es0713983

Frade, 2010, Impact of ionic liquids in environment and humans: an overview, Hum. Exp. Toxicol., 29, 1038, 10.1177/0960327110371259

Anderson, 2006, Ionic liquids in analytical chemistry, Anal. Chem., 78, 2892, 10.1021/ac069394o

Stark, 2008, Purity specification methods for ionic liquids, Green Chem., 10, 1152, 10.1039/b808532c

Koel, 2005, Ionic liquids in chemical analysis, Crit. Rev. Anal. Chem., 35, 177, 10.1080/10408340500304016

Marszałł, 2007, Application of ionic liquids in liquid chromatography, Crit. Rev. Anal. Chem., 37, 127, 10.1080/10408340601107847

Stepnowski, 2003, Reversed-phase liquid chromatographic method for the determination of selected room-temperature ionic liquid cations, J. Chromatogr. A, 993, 173, 10.1016/S0021-9673(03)00322-4

Markuszewski, 2004, Capillary electrophoretic separation of cationic constituents of imidazolium ionic liquids, ELECTROPHORESIS, 25, 3450, 10.1002/elps.200406074

Coleman, 2010, Biodegradation studies of ionic liquids, Chem. Soc. Rev., 39, 600, 10.1039/b817717c

P. Walden, Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzenen Salze, Bulletin de l'Académie Impériale des Sciences de St.-Pétersbourg. VI série1914, pp. 405–422.

Ratti, 2014, Ionic liquids: synthesis and applications in catalysis, Adv. Chem., 2014, 1, 10.1155/2014/729842

Robinson, 1979, An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride, J. Am. Chem. Soc., 101, 323, 10.1021/ja00496a008

Wilkes, 1982, Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis, Inorg. Chem., 21, 1263, 10.1021/ic00133a078

Hurley, 1951, Electrodeposition of metals from fused quaternary ammonium salts, J. Electrochem. Soc., 98, 203, 10.1149/1.2778132

Chauvin, 1995, Catalytic dimerization of propene by nickel-phosphine complexes in 1-butyl-3-methylimidazolium chloride/AlEtxCl3-x (x = 0, 1) ionic liquids, Ind. Eng. Chem. Res., 34, 1149, 10.1021/ie00043a017

Williams, 1987, A new room temperature molten salt solvent system: organic cation tetrachloroborates, J. Am. Chem. Soc., 109, 2218, 10.1021/ja00241a069

Sitze, 2001, Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations, Inorg. Chem., 40, 2298, 10.1021/ic001042r

Li, 2012, Ionic structures of nanobased FeCl3/[C4mim]Cl ionic liquids, J. Phys. Chem. B, 116, 6461, 10.1021/jp206819h

Srour, 2013, A silver and water free metathesis reaction: a route to ionic liquids, Green Chem., 15, 1341, 10.1039/c3gc37034h

Fuller, 1994, Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts, J. Chem. Soc. Chem. Commun., 299, 10.1039/c39940000299

Cammarata, 2001, Molecular states of water in room temperature ionic liquids, Phys. Chem. Chem. Phys., 3, 5192, 10.1039/b106900d

Wilkes, 1992, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, J. Chem. Soc. Chem. Commun., 965, 10.1039/c39920000965

Holbrey, 1999, The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals, J. Chem. Soc. Dalton Trans., 2133, 10.1039/a902818h

Lancaster, 2001, A study of halide nucleophilicity in ionic liquids, J. Chem. Soc. Perkin Trans., 2, 2267, 10.1039/b107381h

Takao, 2014, Efficient and versatile anion metathesis reaction for ionic liquid preparation by using conjugate acid and ortho ester, Bull. Chem. Soc. Jpn., 87, 974, 10.1246/bcsj.20140150

Huddleston, 1998, Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction, Chem. Commun., 1765, 10.1039/A803999B

MacFarlane, 2002, Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion, Green Chem., 4, 444, 10.1039/b205641k

Larsen, 2000, Designing ionic liquids:imidazolium melts with inert carborane anions, J. Am. Chem. Soc., 122, 7264, 10.1021/ja0007511

Hasan, 1999, Gold compounds as ionic liquids. Synthesis, structures, and thermal properties of N,N′-Dialkylimidazolium Tetrachloroaurate salts, Inorg. Chem., 38, 5637, 10.1021/ic990657p

Deetlefs, 2003, Improved preparations of ionic liquids using microwave irradiation, Green Chem., 5, 181, 10.1039/b300071k

Leveque, 2002, An improved preparation of ionic liquids by ultrasound, Green Chem., 4, 357, 10.1039/B203530H

Lévêque, 2006, A general ultrasound-assisted access to room-temperature ionic liquids, Ultrason. Sonochem., 13, 189, 10.1016/j.ultsonch.2005.09.001

Ratti, 2014, Ionic liquids: synthesis and applications in catalysis, Adv. Chem., 2014, 16, 10.1155/2014/729842

Namboodiri, 2002, Solvent-free sonochemical preparation of ionic liquids, Org. Lett., 4, 3161, 10.1021/ol026608p

L., 1937, Über vielgliedrige Ringsysteme: VIII. Über eine neue Anwendung des Verdünnungsprinzips, Justus Liebigs Annalen der Chemie, 528, 155, 10.1002/jlac.19375280110

Pedersen, 1967, Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc., 89, 7017, 10.1021/ja01002a035

McIntosh, 2016, Chapter 2 - methods of synthesis and purification of ionic liquids A2 - Kuzmina, Olga, 59

Varma, 2001, An expeditious solvent-free route to ionic liquids using microwaves, Chem. Commun., 643, 10.1039/b101375k

Khadilkar, 2002, Microwave-assisted synthesis of room-temperature ionic liquid precursor in closed vessel, Org. Process. Res. Dev., 6, 826, 10.1021/op025551j

Bica, 2007, Microwave-assisted synthesis of camphor-derived chiral imidazolium ionic liquids and their application in diastereoselective Diels-Alder reaction, Synthesis, 2007, 1333, 10.1055/s-2007-966018

Ohno, 2007, Amino acid ionic liquids, Acc. Chem. Res., 40, 1122, 10.1021/ar700053z

Pal, 2006, Microwave-assisted synthesis of novel imidazolium-based ionic liquid crystalline dimers, Tetrahedron Lett., 47, 8993, 10.1016/j.tetlet.2006.09.167

Cravotto, 2007, A speedy one-pot synthesis of second-generation ionic liquids under ultrasound and/or microwave irradiation, Aust. J. Chem., 60, 946, 10.1071/CH07309

Cravotto, 2008, Preparation of second generation ionic liquids by efficient solvent-free alkylation of N-heterocycles with Chloroalkanes, Molecules, 13, 149, 10.3390/molecules13010149

Casadonte, 2007, 1.12 - applications of sonochemistry and microwaves in organometallic chemistry, 307

Virkutyte, 2015, 36 - the use of power ultrasound in biofuel production, bioremediation, and other applications, 1095

Schiel, 2015, Chapter 21 - use of ultrasound in the synthesis of heterocycles of medicinal interest, 571

Chatel, 2014, Ionic liquids and ultrasound in combination: synergies and challenges, Chem. Soc. Rev., 43, 8132, 10.1039/C4CS00193A

Hajipour, 2015, Recent progress in ionic liquids and their applications in organic synthesis, Org. Prep. Proced. Int., 47, 249, 10.1080/00304948.2015.1052317

Scott, 2005, Room temperature ionic liquids: different classes and physical properties, Curr. Org. Chem., 9, 959, 10.2174/1385272054368411

Vekariya, 2017, A review of ionic liquids: applications towards catalytic organic transformations, J. Mol. Liq., 227, 44, 10.1016/j.molliq.2016.11.123

Olivier-Bourbigou, 2010, Ionic liquids and catalysis: recent progress from knowledge to applications, Appl. Catal. A Gen., 373, 1, 10.1016/j.apcata.2009.10.008

Yue, 2011, Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions, J. Mol. Liq., 163, 99, 10.1016/j.molliq.2011.09.001

Giernoth, 2010, Task-specific ionic liquids, Angew. Chem. Int. Ed., 49, 2834, 10.1002/anie.200905981

Sawant, 2011, Recent developments of task-specific ionic liquids in organic synthesis, Green Chem. Lett. Rev., 4, 41, 10.1080/17518253.2010.500622

Ralf, 2010, Task-specific ionic liquids, Angew. Chem. Int. Ed., 49, 2834, 10.1002/anie.200905981

Bates, 2002, CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc., 124, 926, 10.1021/ja017593d

Quijada-Maldonado, 2018, Task-specific ionic liquids as extractants for the solvent extraction of molybdenum(VI) from aqueous solution using different commercial ionic liquids as diluents, Ind. Eng. Chem. Res., 57, 1621, 10.1021/acs.iecr.7b04147

Nockemann, 2006, Task-specific ionic liquid for solubilizing metal oxides, J. Phys. Chem. B, 110, 20978, 10.1021/jp0642995

J, 2010, Maleimide-modified phosphonium ionic liquids: a template towards (multi)task-specific ionic liquids, Chem. Eur. J., 16, 9068, 10.1002/chem.200902610

Huang, 2012, Facile synthesis of benzaldehyde-functionalized ionic liquids and their flexible functional group transformations, Org. Chem. Int., 2012, 5, 10.1155/2012/208128

Avtar, 2017, Chiral ionic liquids: design, synthesis and applications in asymmetric organo-catalysis, Curr. Org. Synth., 14, 488, 10.2174/1570179413666160818145415

Suzuki, 2013, Imidazolium-based chiral ionic liquids: synthesis and application, Tetrahedron, 69, 9690, 10.1016/j.tet.2013.09.017

Rodríguez-Cárdenas, 2017, Physical-chemical properties of chiral ionic liquids derived from the phenylethylamine enantiomers, J. Mol. Liq., 236, 435, 10.1016/j.molliq.2017.04.053

Baudequin, 2005, Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis, Tetrahedron Asymmetry, 16, 3921, 10.1016/j.tetasy.2005.10.026

Yu, 2008, Chiral ionic liquids:synthesis, properties, and enantiomeric recognition, J. Organomet. Chem., 73, 2576, 10.1021/jo702368t

D.R.S. L., L. Min, B.D. K., E.Z. Bilal, C. Santhosh, W.I. M., Ephedrinium-based protic chiral ionic liquids for enantiomeric recognition, Chirality, 23 (2011) 54–62.

Singh, 2018, Synthesis, characterization and applications of some novel DMAP-based chiral ionic liquids, J. Mol. Liq., 266, 106, 10.1016/j.molliq.2018.06.058

Baudequin, 2003, Ionic liquids and chirality: opportunities and challenges, Tetrahedron Asymmetry, 14, 3081, 10.1016/S0957-4166(03)00596-2

Bao, 2003, Synthesis of chiral ionic liquids from natural amino acids, J. Organomet. Chem., 68, 591, 10.1021/jo020503i

Andreas, 2010, New chiral ionic liquids based on enantiopure sulfate and sulfonate anions for chiral recognition, Eur. J. Org. Chem., 2010, 5817, 10.1002/ejoc.201000801

Steffen, 2007, Effective chirality transfer in ionic liquids through ion-pairing effects, Angew. Chem. Int. Ed., 46, 1293, 10.1002/anie.200604406

Rahman, 2010, Synthesis and physico-chemical properties of new tetraethylammonium-based amino acid chiral ionic liquids, Molecules, 15, 2388, 10.3390/molecules15042388

Yinghuai, 2013, Applications of ionic liquids in lignin chemistry, ionic liquids - new aspects for the future

Memon, 2017, Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination, J. Mol. Liq., 229, 459, 10.1016/j.molliq.2016.12.098

Phan, 2008, Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures, Ind. Eng. Chem. Res., 47, 539, 10.1021/ie070552r

Boyd, 2013, Switchable polarity solvent (SPS) systems: probing solvatoswitching with a spiropyran (SP)-merocyanine (MC) photoswitch, Org. Biomol. Chem., 11, 6047, 10.1039/c3ob41204k

M.S, 2018, Synthesis and evaluation of bio-compatible cholinium amino acid ionic liquids for lubrication applications, J. Ind. Eng. Chem., 64, 420, 10.1016/j.jiec.2018.04.004

Klejdysz, 2016, Biobased ionic liquids with abietate anion, ACS Sustain. Chem. Eng., 4, 6543, 10.1021/acssuschemeng.6b01381

Hulsbosch, 2016, Biobased ionic liquids: solvents for a green processing industry?, ACS Sustain. Chem. Eng., 4, 2917, 10.1021/acssuschemeng.6b00553

Fukaya, 2007, Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials, Green Chem., 9, 1155, 10.1039/b706571j

Gontrani, 2017, Bio ionic liquids and water mixtures: a structural study, RSC Adv., 7, 19338, 10.1039/C6RA28545G

Pavlovica, 2011, (2-hydroxyethyl)ammonium lactates¡ªHighly biodegradable and essentially non-toxic ionic liquids, Green and Sustainable Chemistry, 01, 8, 10.4236/gsc.2011.13017

Qian, 2017, Frontiers in poly(ionic liquid)s: syntheses and applications, Chem. Soc. Rev., 46, 1124, 10.1039/C6CS00620E

Kausar, 2017, Research progress in frontiers of poly(ionic liquid)s: a review, Polym.-Plast. Technol. Eng., 56, 1823, 10.1080/03602559.2017.1289410

Shaplov, 2016, Poly(ionic liquid)s: synthesis, properties, and application, Polym. Sci., Ser. B, 58, 73, 10.1134/S156009041602007X

Yuan, 2011, Poly(ionic liquid)s: polymers expanding classical property profiles, Polymer, 52, 1469, 10.1016/j.polymer.2011.01.043

Mehta, 2005, Synthesis of poly(lactic acid): a review, J. Macromol. Sci., Part C, 45, 325, 10.1080/15321790500304148

Torriero, 2011

Sato, 2004, Electrochemical properties of novel ionic liquids for electric double layer capacitor applications, Electrochim. Acta, 49, 3603, 10.1016/j.electacta.2004.03.030

Martinelli, 2007, Physical properties of proton conducting membranes based on a protic ionic liquid, J. Phys. Chem. B, 111, 12462, 10.1021/jp0735029

Alessandra, 2007, New types of Brönsted acid–base ionic liquids-based membranes for applications in PEMFCs, ChemPhysChem, 8, 1103, 10.1002/cphc.200600782

Anderson, 2005, Structure and properties of high stability geminal dicationic ionic liquids, J. Am. Chem. Soc., 127, 593, 10.1021/ja046521u

Hagfeldt, 2010, Dye-sensitized solar cells, Chem. Rev., 110, 6595, 10.1021/cr900356p

Marcilla, 2006, Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices, Electrochem. Commun., 8, 482, 10.1016/j.elecom.2006.01.013

Li, 2011, Polymer electrolytes containing guanidinium-based polymeric ionic liquids for rechargeable lithium batteries, J. Power Sources, 196, 8662, 10.1016/j.jpowsour.2011.06.059

Kim, 2011, High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes, ACS Nano, 5, 436, 10.1021/nn101968p

Tiruye, 2016, Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids, J. Power Sources, 326, 560, 10.1016/j.jpowsour.2016.03.044

Choi, 2015, Single ion conducting, polymerized ionic liquid triblock copolymer films: high capacitance electrolyte gates for n-type transistors, ACS Appl. Mater. Interfaces, 7, 7294, 10.1021/acsami.5b00495

Wu, 2018, In situ μ-printed optical fiber-tip CO2 sensor using a photocrosslinkable poly(ionic liquid), Sensors Actuators B Chem., 259, 833, 10.1016/j.snb.2017.12.125

Kim, 2010, Synthesis of phase transferable graphene sheets using ionic liquid polymers, ACS Nano, 4, 1612, 10.1021/nn901525e

Grygiel, 2015, Thiazolium poly(ionic liquid)s: synthesis and application as binder for lithium-ion batteries, ACS Macro Lett., 4, 1312, 10.1021/acsmacrolett.5b00655

Tang, 2015, A polymeric ionic liquid functionalized temperature-responsive composite membrane with tunable responsive behavior, J. Mater. Chem. A, 3, 7919, 10.1039/C5TA00212E

Shaohua, 2015, Unusual and superfast temperature-triggered actuators, Adv. Mater., 27, 4865, 10.1002/adma.201502133

Yubing, 2012, One-step synthesis of thermosensitive nanogels based on highly cross-linked poly(ionic liquid)s, Angew. Chem. Int. Ed., 51, 9114, 10.1002/anie.201202957

Chen, 2016, Thermo- and pH-responsive poly(ionic liquid) membranes, Polym. Chem., 7, 1330, 10.1039/C5PY01927C

Rahman, 2013, Monodisperse polymeric ionic liquid microgel beads with multiple chemically switchable functionalities, Langmuir, 29, 9535, 10.1021/la401613w

Xiao, 2007, Photosensitive polymer from ionic self-assembly of azobenzene dye and poly(ionic liquid) and its alignment characteristic toward liquid crystal molecules, Macromolecules, 40, 7944, 10.1021/ma070972s

Tudor, 2016, Poly(ionic liquid) semi-interpenetrating network multi-responsive hydrogels, Sensors, 16, 219, 10.3390/s16020219

Zhao, 2014, An instant multi-responsive porous polymer actuator driven by solvent molecule sorption, Nat. Commun., 5, 4293, 10.1038/ncomms5293

Z. Qiang, H. Jan, D. Joachim, T. Karoline, D.J.W. C., Y. Jiayin, Sensing solvents with ultrasensitive porous poly(ionic liquid) actuators, Adv. Mater., 27 (2015) 2913–2917.

Supasitmongkol, 2010, High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid), Energy Environ. Sci., 3, 1961, 10.1039/c0ee00293c

Feng, 2014, Electrografting of stimuli-responsive, redox active organometallic polymers to gold from ionic liquids, J. Am. Chem. Soc., 136, 7865, 10.1021/ja503807r

Jing, 2016, CO2 responsive imidazolium-type poly(ionic liquid) gels, Macromol. Rapid Commun., 37, 1194, 10.1002/marc.201600069

Liu, 2012, Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts, J. Am. Chem. Soc., 134, 16948, 10.1021/ja307455w

Yao, 2018, Poly(ionic liquid): a new phase in a thermoregulated phase separated catalysis and catalyst recycling system of transition metal-mediated ATRP, Polymers, 10, 347, 10.3390/polym10040347

Restrepo, 2015, Gold nanoparticles immobilized onto supported ionic liquid-like phases for microwave phenylethanol oxidation in water, Catal. Today, 255, 97, 10.1016/j.cattod.2014.12.023

Isik, 2016, Sustainable poly(ionic liquids) for CO2 capture based on deep eutectic monomers, ACS Sustain. Chem. Eng., 4, 7200, 10.1021/acssuschemeng.6b02137

Liu, 2015, A novel poly(ionic liquid) interface-free two-dimensional monolithic material for the separation of multiple types of glycoproteins, ACS Appl. Mater. Interfaces, 7, 20430, 10.1021/acsami.5b07668

F. Xuelin, L. Huili, G. Yating, Z. Zhu, C.V.S. J., Z. Guangzhao, L. Guangming, Forward-osmosis desalination with poly(ionic liquid) hydrogels as smart draw agents, Adv. Mater., 28 (2016) 4156–4161.

Tang, 2005, Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption, Chem. Commun., 3325

Cheng, 2015, Poly(ionic liquid)-based nanocomposites and their performance in CO2 capture, Ind. Eng. Chem. Res., 54, 3107, 10.1021/ie505014h

Tang, 2008, Poly(ionic liquid)s as optically transparent microwave-absorbing materials, Macromolecules, 41, 493, 10.1021/ma071762i

Jianbin, 2005, Poly(ionic liquid)s as new materials for CO2 absorption, J. Polym. Sci. A Polym. Chem., 43, 5477, 10.1002/pola.21031

Tamilarasan, 2015, A polymerized ionic liquid functionalized cathode catalyst support for a proton exchange membrane CO2 conversion cell, RSC Adv., 5, 24864, 10.1039/C5RA03002A

Kammakakam, 2013, Alkyl imidazolium-functionalized cardo-based poly(ether ketone)s as novel polymer membranes for O2/N2 and CO2/N2 separations, Polymer, 54, 3534, 10.1016/j.polymer.2013.05.006

Riduan, 2013, Imidazolium salts and their polymeric materials for biological applications, Chem. Soc. Rev., 42, 9055, 10.1039/c3cs60169b

Guo, 2015, Intrinsically antibacterial poly(ionic liquid) membranes: the synergistic effect of anions, ACS Macro Lett., 4, 1094, 10.1021/acsmacrolett.5b00609

L. Yan, F. Kazuki, C.D. J., E.A. C., L. Shaoqiong, H. Yuan, C.J. S., G. Yi, M.L. S., T.J.P. K., E.P.L. Rachel, F. Weimin, Y.Y. Yan, H.J. L., Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies, Angew. Chem. Int. Ed., 52 (2013) 674–678.

Huanxiang, 2014, Cationic conjugated polymers for discrimination of microbial pathogens, Adv. Mater., 26, 4333, 10.1002/adma.201400636

Abdelhedi-Miladi, 2014, UV-patterning of ion conducting negative tone photoresists using azide-functionalized poly(ionic liquid)s, ACS Macro Lett., 3, 1187, 10.1021/mz5005986

Schultz, 2014, 3D printing phosphonium ionic liquid networks with mask projection microstereolithography, ACS Macro Lett., 3, 1205, 10.1021/mz5006316

Taghavikish, 2016, Polymeric ionic liquid nanoparticle emulsions as a corrosion inhibitor in anticorrosion coatings, ACS Omega, 1, 29, 10.1021/acsomega.6b00027

Kojirou, 2013, The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance, Angew. Chem. Int. Ed., 52, 7446, 10.1002/anie.201301652

Dupont, 2010, On the structural and surface properties of transition-metal nanoparticles in ionic liquids, Chem. Soc. Rev., 39, 1780, 10.1039/b822551f

Mónica, 2012, Facile incorporation of natural carboxylic acids into polymers via polymerization of protic ionic liquids, J. Polym. Sci. A Polym. Chem., 50, 1049, 10.1002/pola.25882

Vasko, 2012, Comparison between two different synthetic routes of pyrrolidinium functional polymeric ionic liquids, Macromol. Symp., 311, 77, 10.1002/masy.201000102

Sebastiao, 2014, Recent developments in the field of energetic ionic liquids, J. Mater. Chem. A, 2, 8153, 10.1039/C4TA00204K

Zhang, 2018, Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids, Chem. Eng. Sci., 180, 95, 10.1016/j.ces.2017.11.044

Z. Yanqiang, G. Haixiang, G. Yong, J. Young-Hyuk, S.J.n. M., Hypergolic N,N-dimethylhydrazinium ionic liquids, Chem. Eur. J., 16 (2010) 3114–3120.

McCrary, 2014, Evaluating ionic liquids as hypergolic fuels: exploring reactivity from molecular structure, Energy Fuel, 28, 3460, 10.1021/ef500264z

Hajipour, 2009, Basic ionic liquids. A short review, J. Iran. Chem. Soc., 6, 647, 10.1007/BF03246155

Golding, 2002, Methanesulfonate and p-toluenesulfonate salts of the N-methyl-N-alkylpyrrolidinium and quaternary ammonium cations: novel low cost ionic liquids, Green Chem., 4, 223, 10.1039/b201063a

MacFarlane, 1999, Pyrrolidinium imides:a new family of molten salts and conductive plastic crystal phases, J. Phys. Chem. B, 103, 4164, 10.1021/jp984145s

Yoshida, 2004, 1-Ethyl-3-methylimidazolium based ionic liquids containing cyano groups:synthesis, characterization, and crystal structure, Inorg. Chem., 43, 1458, 10.1021/ic035045q

Tao, 2011, Hydrolysis of cellulose in SO3H-functionalized ionic liquids, Bioresour. Technol., 102, 9000, 10.1016/j.biortech.2011.06.067

Xu, 2009, Fischer indole synthesis catalyzed by novel SO3H-functionalized ionic liquids in water, Green Chem., 11, 1239, 10.1039/b901010f

Lin, 2005, Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety, J. Organomet. Chem., 690, 3498, 10.1016/j.jorganchem.2005.03.007

Zhu, 2003, Bronsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for esterification, Green Chem., 5, 38, 10.1039/b209248b

Driver, 2003, 3-Methylimidazolium bromohydrogenates(i): a room-temperature ionic liquid for ether cleavage, Green Chem., 5, 163, 10.1039/b211548d

Joseph, 2005, Brönsted acidic ionic liquids: a green, efficient and reusable catalyst system and reaction medium for Fischer esterification, J. Mol. Catal. A Chem., 234, 107, 10.1016/j.molcata.2005.03.005

Zheng, 2017, Esterification synthesis of ethyl oleate catalyzed by Brønsted acid–surfactant-combined ionic liquid, Green Chemistry Letters and Reviews, 10, 202, 10.1080/17518253.2017.1342001

K. Gerardus J., R. Theodorus A., H. Peter W., Cleavage of aromatic methyl ethers by chloroaluminate ionic liquid reagents, Eur. J. Org. Chem., 2003 (2003) 1681–1686.

Yadav, 2003, Green protocol for conjugate addition of thiols to α,β-unsaturated ketones using a [Bmim]PF6/H2O system, J. Organomet. Chem., 68, 7098, 10.1021/jo034335l

Ranu, 2004, Catalysis by ionic liquid: a simple, green and efficient procedure for the Michael addition of thiols and thiophosphate to conjugated alkenes in ionic liquid, [pmIm]Br, Tetrahedron, 60, 4183, 10.1016/j.tet.2004.03.052

Zhang, 2000, Highly enantioselective Michael reactions catalyzed by a chiral quaternary ammonium salt. Illustration by asymmetric syntheses of (S)-ornithine and chiral 2-cyclohexenones, Org. Lett., 2, 1097, 10.1021/ol0056527

Corey, 1999, Mechanism and conditions for highly enantioselective epoxidation of α,β-enones using charge-accelerated catalysis by a rigid quaternary ammonium salt, Org. Lett., 1, 1287, 10.1021/ol990964z

McNulty, 2005, A mild esterification process in phosphonium salt ionic liquid, Tetrahedron Lett., 46, 3641, 10.1016/j.tetlet.2005.03.169

Jorapur, 2005, Mono- and dialkylations of pyrrole at C2 and C5 positions by nucleophilic substitution reaction in ionic liquid, Org. Lett., 7, 1231, 10.1021/ol047446v

Yang, 2006, Highly efficient aza-Michael reactions of aromatic amines and N-heterocycles catalyzed by a basic ionic liquid under solvent-free conditions, Tetrahedron Lett., 47, 7723, 10.1016/j.tetlet.2006.08.103

Ranu, 2005, Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles, Org. Lett., 7, 3049, 10.1021/ol051004h

Xu, 2007, A fast and highly efficient protocol for Michael addition of N-heterocycles to α,β-unsaturated compound using basic ionic liquid [bmIm]OH as catalyst and green solvent, Tetrahedron, 63, 986, 10.1016/j.tet.2006.11.013

C.P. Mehnert, N.C. Dispenziere, R.A. Cook, Preparation of C9-aldehyde via aldol condensation reactions in ionic liquid media, Chem. Commun., DOI https://doi.org/10.1039/B203068C(2002) 1610–1611.

Deng, 2012, Basic ionic liquids: a new type of ligand and catalyst for the AGET ATRP of methyl methacrylate, Polym. Chem., 3, 2436, 10.1039/c2py20262j

Xin, 2014, Imidazolium-based ionic liquids grafted on solid surfaces, Chem. Soc. Rev., 43, 7171, 10.1039/C4CS00172A

Zhang, 2010, A silica gel supported dual acidic ionic liquid: an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols, Green Chem., 12, 2246, 10.1039/c0gc00472c

Nouri Sefat, 2011, Preparation of silica-based ionic liquid an efficient and recyclable catalyst for one-pot synthesis of α-aminonitriles, Catal. Lett., 141, 1713, 10.1007/s10562-011-0696-x

Chrobok, 2009, Supported hydrogensulfate ionic liquid catalysis in Baeyer–Villiger reaction, Appl. Catal. A Gen., 366, 22, 10.1016/j.apcata.2009.06.040

Mehnert, 2002, Supported ionic liquid catalysis − a new concept for homogeneous hydroformylation catalysis, J. Am. Chem. Soc., 124, 12932, 10.1021/ja0279242

Gupta, 2012, Low density ionogels obtained by rapid gellification of tetraethyl orthosilane assisted by ionic liquids, Dalton Trans., 41, 6263, 10.1039/c2dt30318c

Singh, 2018, Novel synthesis of immobilized Brønsted- acidic ionic liquid: application in lignin depolymerization, ChemistrySelect, 3, 5461, 10.1002/slct.201703050

Ventura, 2017, Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends, Chem. Rev., 117, 6984, 10.1021/acs.chemrev.6b00550

Jing, 2015, Synthesis, purification and recycling of ionic liquid, Mini-Reviews in Organic Chemistry, 12, 435, 10.2174/1570193X13666151125230810

C.M. Gordon, M.J. Muldoon, M. Wagner, C. Hilgers, J.H. Davis, P. Wasserscheid, Synthesis and purification in: P. Wasserscheid, T. Welton (Eds.) Ionic Liquids in Synthesis (2nd Ed), Wiley-VCH Verlag GmbH & Co. KGaA2008, pp. 7–75.

Greaves, 2008, Protic ionic liquids:properties and applications, Chem. Rev., 108, 206, 10.1021/cr068040u

Marcus, 2016

Ma, 2018, The peculiar effect of water on ionic liquids and deep eutectic solvents, Chem. Soc. Rev., 47, 8685, 10.1039/C8CS00325D

Yang, 2005, Ionic liquids: green solvents for nonaqueous biocatalysis, Enzym. Microb. Technol., 37, 19, 10.1016/j.enzmictec.2005.02.014

Rivera-Rubero, 2004, Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids, J. Am. Chem. Soc., 126, 11788, 10.1021/ja0464894

Widegren, 2005, The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids, Chem. Commun., 1610, 10.1039/b417348a

Huddleston, 2001, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem., 3, 156, 10.1039/b103275p

Roy, 2015, Chapter 12 - Future Avenues, 455

Zhao, 2002, Ionic liquids: applications in catalysis, Catal. Today, 74, 157, 10.1016/S0920-5861(01)00541-7

Plechkova, 2008, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 37, 123, 10.1039/B006677J

Matsagar, 2015, Conversion of concentrated sugar solutions into 5-hydroxymethyl furfural and furfural using Bronsted acidic ionic liquids, Catal. Sci. Technol., 5, 5086, 10.1039/C5CY00858A

MacFarlane, 2014, Energy applications of ionic liquids, Energy Environ. Sci., 7, 232, 10.1039/C3EE42099J

Liang, 2014, Composite ionic liquid and polymer membranes for gas separation at elevated temperatures, J. Membr. Sci., 450, 407, 10.1016/j.memsci.2013.09.033

Weidmann, 2012, Ionic liquids as matrices in microfluidic sample deposition for high-mass matrix- assisted laser desorption/ionization mass spectrometry, Eur. J. Mass Spectrom. (Chichester, Eng.), 18, 279, 10.1255/ejms.1182

Liu, 2010, Ionic liquids in surface electrochemistry, Phys. Chem. Chem. Phys., 12, 1685, 10.1039/b921469k

Chen, 2014, Thermal conductivity of ionic liquids at atmospheric pressure: database, analysis, and prediction using a topological index method, Ind. Eng. Chem. Res., 53, 7224, 10.1021/ie403500w

Sánchez-Ramírez, 2017, J. Chem. Eng. Data, 62, 3437, 10.1021/acs.jced.7b00458

Guangren, 2012, Viscosity of ionic liquids: database, observation, and quantitative structure-property relationship analysis, AICHE J., 58, 2885, 10.1002/aic.12786

Almeida, 2016, Densities and viscosities of mixtures of two ionic liquids containing a common cation, J. Chem. Eng. Data, 61, 2828, 10.1021/acs.jced.6b00178

Paduszyński, 2014, Viscosity of ionic liquids: an extensive database and a new group contribution model based on a feed-forward artificial neural network, J. Chem. Inf. Model., 54, 1311, 10.1021/ci500206u

Hultgren, 2002, Reference potential calibration and voltammetry at macrodisk electrodes of metallocene derivatives in the ionic liquid [bmim][PF6], Anal. Chem., 74, 3151, 10.1021/ac015729k

Schroder, 2000, Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids, New J. Chem., 24, 1009, 10.1039/b007172m

Álvaro, 2002, Screening of an ionic liquid as medium for photochemical reactions, Chem. Phys. Lett., 362, 435, 10.1016/S0009-2614(02)01138-7

Behar, 2002, Reaction kinetics in ionic liquids as studied by pulse radiolysis:redox reactions in the solvents methyltributylammonium bis(trifluoromethylsulfonyl)imide and N-butylpyridinium tetrafluoroborate, J. Phys. Chem. A, 106, 3139, 10.1021/jp013808u

Gordon, 2000, Photoelectron transfer from excited-state ruthenium(II) tris(bipyridyl) to methylviologen in an ionic liquid, Chem. Commun., 1395, 10.1039/b003754k

Evans, 2005, A comparative electrochemical study of diffusion in room temperature ionic liquid solvents versus acetonitrile, ChemPhysChem, 6, 526, 10.1002/cphc.200400549

Vieira, 2008, Solvent-mediated photoinduced electron transfer in a pyridinium ionic liquid, J. Am. Chem. Soc., 130, 1552, 10.1021/ja077797f

Del Pópolo, 2006, Solvation structure and transport of acidic protons in ionic liquids:a first-principles simulation study, J. Phys. Chem. B, 110, 8798, 10.1021/jp0602326

Kappe, 2007, 3.36 - Microwave-assisted chemistry A2 - Taylor, John B, 837

Li, 2010, Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification, Bioresour. Technol., 101, 4900, 10.1016/j.biortech.2009.10.066

Zhang, 2012, J. Chromatogr. A, 1254, 23, 10.1016/j.chroma.2012.07.051

Noshadi, 2017, Engineering biodegradable and biocompatible bio-ionic liquid conjugated hydrogels with tunable conductivity and mechanical properties, Sci. Rep., 7, 4345, 10.1038/s41598-017-04280-w

Werner, 2010, Ionic liquids in chemical engineering, Ann. Rev. Chem. Biomol. Eng., 1, 203, 10.1146/annurev-chembioeng-073009-100915

2010, Phys. Chem. Chem. Phys., 12

Stark, 2008, Purity specification methods for ionic liquids, Green Chem., 10, 1152, 10.1039/b808532c

Cai, 2014, Systematic study on the general preparation of ionic liquids with high purity via hydroxide intermediates, Ind. Eng. Chem. Res., 53, 6871, 10.1021/ie500086r

Swatloski, 2002, Dissolution of cellose with ionic liquids, J. Am. Chem. Soc., 124, 4974, 10.1021/ja025790m

Ibrahim, 2015, Dissolution of cellulose with ionic liquid in pressurized cell, J. Mol. Liq., 211, 370, 10.1016/j.molliq.2015.07.041

Seema, 2009, Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass, Biotechnol. Bioeng., 104, 68, 10.1002/bit.22386

Sun, 2018, Solubilization and upgrading of high polyethylene terephthalate loadings in a low-costing bifunctional ionic liquid, ChemSusChem, 11, 781, 10.1002/cssc.201701798

Datta, 2010, Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis, Green Chem., 12, 338, 10.1039/b916564a

Fu, 2010, Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues, J. Agric. Food Chem., 58, 2915, 10.1021/jf903616y

Socha, 2014, Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose, Proc. Natl. Acad. Sci., 111, E3587, 10.1073/pnas.1405685111

Zhang, 2006, Physical properties of ionic liquids: database and evaluation, J. Phys. Chem. Ref. Data, 35, 1475, 10.1063/1.2204959

Wishart, 2007, The physical chemistry of ionic liquids, J. Phys. Chem. B, 111, 4639, 10.1021/jp072262u

Angell, 2007, Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications, Acc. Chem. Res., 40, 1228, 10.1021/ar7001842

Deetlefs, 2006, Predicting physical properties of ionic liquids, Phys. Chem. Chem. Phys., 8, 642, 10.1039/B513453F

Wilkes, 2004, Properties of ionic liquid solvents for catalysis, J. Mol. Catal. A Chem., 214, 11, 10.1016/j.molcata.2003.11.029

Zhao, 2003, Review: current studies on some physical properties of ionic liquids, Phys. Chem. Liq., 41, 545, 10.1080/003191031000117319

Fang, 2008, Study on physicochemical properties of ionic liquids based on alanine [Cnmim][ala] (n = 2,3,4,5,6), J. Phys. Chem. B, 112, 7499, 10.1021/jp801269u

Opallo, 2011, A review on electrodes modified with ionic liquids, J. Electroanal. Chem., 656, 2, 10.1016/j.jelechem.2011.01.008

Shiddiky, 2011, Application of ionic liquids in electrochemical sensing systems, Biosens. Bioelectron., 26, 1775, 10.1016/j.bios.2010.08.064

Liu, 1995, Liquid droplet. A renewable gas sampling interface, Anal. Chem., 67, 2042, 10.1021/ac00109a023

Jeannot, 1996, Solvent microextraction into a single drop, Anal. Chem., 68, 2236, 10.1021/ac960042z

Liu, 2003, Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons, Anal. Chem., 75, 5870, 10.1021/ac034506m

Wen, 2011, Ionic liquid-based single drop microextraction of ultra-trace copper in food and water samples before spectrophotometric determination, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, 1941, 10.1016/j.saa.2011.05.095

Wen, 2013, A new coupling of ionic liquid based-single drop microextraction with tungsten coil electrothermal atomic absorption spectrometry, Spectrochim. Acta A Mol. Biomol. Spectrosc., 105, 320, 10.1016/j.saa.2012.12.040

Márquez-Sillero, 2011, Direct determination of 2,4,6-tricholoroanisole in wines by single-drop ionic liquid microextraction coupled with multicapillary column separation and ion mobility spectrometry detection, J. Chromatogr. A, 1218, 7574, 10.1016/j.chroma.2011.06.032

Márquez-Sillero, 2011, Determination of 2,4,6-tricholoroanisole in water and wine samples by ionic liquid-based single-drop microextraction and ion mobility spectrometry, Anal. Chim. Acta, 702, 199, 10.1016/j.aca.2011.06.046

Ahmad, 2011, Characterization of pathogenic bacteria using ionic liquid viasingle drop microextraction combined with MALDI-TOF MS, Analyst, 136, 4020, 10.1039/c1an15350a

Carrillo-Carrion, 2012, (CdSe/ZnS QDs)-ionic liquid-based headspace single drop microextraction for the fluorimetric determination of trimethylamine in fish, Analyst, 137, 1152, 10.1039/c2an15914g

Pedersen-Bjergaard, 1999, Liquid−liquid−liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis, Anal. Chem., 71, 2650, 10.1021/ac990055n

Peng, 2007, Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography, J. Chromatogr. A, 1139, 165, 10.1016/j.chroma.2006.11.006

Wu, 2011, Ionic liquid sensitized fluorescence determination of four isoquinoline alkaloids, Talanta, 85, 787, 10.1016/j.talanta.2011.04.076

Parrilla Vázquez, 2013, Ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction coupled with liquid chromatography-quadrupole-linear ion trap-mass spectrometry for simultaneous analysis of pharmaceuticals in wastewaters, J. Chromatogr. A, 1291, 19, 10.1016/j.chroma.2013.03.066

Xu, 2013, Ionic liquid-based microwave-assisted surfactant-improved dispersive liquid–liquid microextraction and derivatization of aminoglycosides in milk samples, J. Sep. Sci., 36, 585, 10.1002/jssc.201200801

Rao, 2013, Ionic-liquid based dispersive liquid–liquid microextraction followed by high performance liquid chromatographic determination of anti-hypertensives in rat serum, J. Chromatogr. B, 931, 174, 10.1016/j.jchromb.2013.05.027

Ge, 2013, Ionic liquid based dispersive liquid–liquid microextraction coupled with micro-solid phase extraction of antidepressant drugs from environmental water samples, J. Chromatogr. A, 1317, 217, 10.1016/j.chroma.2013.04.014

Ranjbar, 2012, Ionic liquid based dispersive liquid-liquid microextraction combined with ICP-OES for the determination of trace quantities of cobalt, copper, manganese, nickel and zinc in environmental water samples, Microchim. Acta, 177, 119, 10.1007/s00604-011-0757-2

Lopez-Garcia, 2012, Determination of very low amounts of chromium(iii) and (vi) using dispersive liquid-liquid microextraction by in situ formation of an ionic liquid followed by electrothermal atomic absorption spectrometry, J. Anal. At. Spectrom., 27, 874, 10.1039/c2ja10378h

Wen, 2013, Room temperature ionic liquid-based dispersive liquid–liquid microextraction combined with flame atomic absorption spectrometry for the speciation of chromium(III) and chromium(VI), J. Mol. Liq., 180, 59, 10.1016/j.molliq.2012.12.036

Naeemullah, M. Tuzen, T.G. Kazi, D. Citak, M. Soylak, Pressure-assisted ionic liquid dispersive microextraction of vanadium coupled with electrothermal atomic absorption spectrometry, J. Anal. At. Spectrom., 28 (2013) 1441–1445.

Escudero, 2013, Sensitive determination of thallium species in drinking and natural water by ionic liquid-assisted ion-pairing liquid–liquid microextraction and inductively coupled plasma mass spectrometry, J. Hazard. Mater., 244-245, 380, 10.1016/j.jhazmat.2012.11.057

Zhang, 2011, Comparison of the performance of conventional, temperature-controlled, and ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction combined with high-performance liquid chromatography in analyzing pyrethroid pesticides in honey samples, J. Chromatogr. A, 1218, 6621, 10.1016/j.chroma.2011.07.102

Li, 2013, Ionic liquid-linked dual magnetic microextraction: a novel and facile procedure for the determination of pyrethroids in honey samples, Talanta, 107, 81, 10.1016/j.talanta.2012.12.056

Zhang, 2012, Magnetic retrieval of ionic liquids: fast dispersive liquid–liquid microextraction for the determination of benzoylurea insecticides in environmental water samples, J. Chromatogr. A, 1254, 23, 10.1016/j.chroma.2012.07.051

Joshi, 2012, Synthesis of glucaminium-based ionic liquids and their application in the removal of boron from water, Chem. Commun., 48, 1410, 10.1039/C1CC14327A

Yan, 2013, Ionic liquids modified dummy molecularly imprinted microspheres as solid phase extraction materials for the determination of clenbuterol and clorprenaline in urine, J. Chromatogr. A, 1294, 10, 10.1016/j.chroma.2013.04.024

Yan, 2012, New ionic liquid modified polymeric microspheres for solid-phase extraction of four Sudan dyes in foodstuff samples, J. Agric. Food Chem., 60, 6907, 10.1021/jf301224t

Bi, 2012, Selective extraction and separation of oxymatrine from Sophora flavescens Ait. extract by silica-confined ionic liquid, J. Chromatogr. B, 880, 108, 10.1016/j.jchromb.2011.11.025

Twu, 2011, Evaluating the solvation properties of functionalized ionic liquids with varied cation/anion composition using the solvation parameter model, J. Chromatogr. A, 1218, 5311, 10.1016/j.chroma.2011.05.083

Tan, 2012, Advances in analytical chemistry using the unique properties of ionic liquids, TrAC Trends Anal. Chem., 39, 218, 10.1016/j.trac.2012.06.005

Anderson, 2002, Characterizing ionic liquids on the basis of multiple solvation interactions, J. Am. Chem. Soc., 124, 14247, 10.1021/ja028156h

Crowhurst, 2003, Solvent-solute interactions in ionic liquids, Phys. Chem. Chem. Phys., 5, 2790, 10.1039/B303095D

Qiu, 2010, Investigation of π–π and ion–dipole interactions on 1-allyl-3-butylimidazolium ionic liquid-modified silica stationary phase in reversed-phase liquid chromatography, J. Chromatogr. A, 1217, 5190, 10.1016/j.chroma.2010.06.013

Qiu, 2012, New poly(ionic liquid)-grafted silica multi-mode stationary phase for anion-exchange/reversed-phase/hydrophilic interaction liquid chromatography, Analyst, 137, 2553, 10.1039/c2an35348b

Pandey, 2006, Analytical applications of room-temperature ionic liquids: a review of recent efforts, Anal. Chim. Acta, 556, 38, 10.1016/j.aca.2005.06.038

Chen, 2011, Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation, Talanta, 83, 724, 10.1016/j.talanta.2010.10.023

Bian, 2012, Effects and mechanism characterization of ionic liquids as mobile phase additives for the separation of matrine-type alkaloids by liquid chromatography, J. Pharm. Biomed. Anal., 58, 163, 10.1016/j.jpba.2011.09.026

Flieger, 2012, Usefulness of reversed-phase HPLC enriched with room temperature imidazolium based ionic liquids for lipophilicity determination of the newly synthesized analgesic active urea derivatives, J. Pharm. Biomed. Anal., 66, 58, 10.1016/j.jpba.2012.02.025

Jia, 2013, Effects of ionic liquid and nanogold particles on high-performance liquid chromatography-electrochemical detection and their application in highly efficient separation and sensitive analysis of five phenolic acids in Xuebijing injection, Talanta, 107, 103, 10.1016/j.talanta.2012.12.031

Xu, 2009, Ionic liquids used in and analyzed by capillary and microchip electrophoresis, J. Chromatogr. A, 1216, 4817, 10.1016/j.chroma.2009.04.024

Jing, 2011, Polymeric ionic liquid-coated capillary for capillary electrophoresis, J. Sep. Sci., 34, 1555, 10.1002/jssc.201100128

Sun, 2010, Ionic liquids in analytical chemistry, Anal. Chim. Acta, 661, 1, 10.1016/j.aca.2009.12.007

Carda-Broch, Samuel, Alain Berthod, Daniel W. Armstrong, Ionic Matrices for matrix-assisted laser desorption/ionization time-of-flight detection of DNA oligomers, Rapid Commun. Mass Spectrom., 17 (2003) 553–560.

Armstrong, 2001, Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry, Anal. Chem., 73, 3679, 10.1021/ac010259f

Mank, 2004, 2,5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules, Anal. Chem., 76, 2938, 10.1021/ac030354j

Li, 2004, Ionic-liquid matrices for quantitative analysis by MALDI-TOF mass spectrometry, J. Am. Soc. Mass Spectrom., 15, 1833, 10.1016/j.jasms.2004.08.011

Li, 2005, Ionic-liquid matrices for improved analysis of phospholipids by MALDI-TOF mass spectrometry, J. Am. Soc. Mass Spectrom., 16, 679, 10.1016/j.jasms.2005.01.017

Crank, 2009, Towards a second generation of ionic liquid matrices (ILMs) for MALDI-MS of peptides, proteins, and carbohydrates, J. Am. Soc. Mass Spectrom., 20, 1790, 10.1016/j.jasms.2009.05.020

Ho, 2014, Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives, Anal. Chem., 86, 262, 10.1021/ac4035554

Egorova, 2017, Biological activity of ionic liquids and their application in pharmaceutics and medicine, Chem. Rev., 117, 7132, 10.1021/acs.chemrev.6b00562

Ranke, 2004, Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays, Ecotoxicol. Environ. Saf., 58, 396, 10.1016/S0147-6513(03)00105-2

Zhang, 2009, Synthesis and biological applications of imidazolium-based polymerized ionic liquid as a gene delivery vector, Chem. Biol. Drug Des., 74, 282, 10.1111/j.1747-0285.2009.00858.x

Sun, 2011, Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?, Chem. Commun., 47, 1405, 10.1039/C0CC03990J