Ionic Liquids and Deep-Eutectic Solvents in Extractive Metallurgy: Mismatch Between Academic Research and Industrial Applicability

Journal of Sustainable Metallurgy - Tập 9 - Trang 423-438 - 2023
Koen Binnemans1, Peter Tom Jones2
1SOLVOMET Group, Department of Chemistry, KU Leuven, Heverlee, Belgium
2Department of Materials Engineering, KU Leuven, Heverlee, Belgium

Tóm tắt

The past 10–20 years have seen numerous academic papers describing the benefits of ionic liquids (ILs) and deep-eutectic solvents (DESs) for leaching, solvent extraction and electrowinning. The scientific community—including the authors of this opinion article—have frequently proclaimed these neoteric solvents as game-changers in extractive metallurgy. Despite this, there have been no commercial breakthroughs. In this paper we reflect on the reasons why ILs and DESs seem to have failed to impact on the metallurgical industry. These include: (1) issues with high viscosity; (2) limited chemical stability under the conditions of metallurgical processes; (3) difficulties with recycling and reuse; (4) a lack of demonstrated unit processes and flowsheets on the pilot scale; (5) insufficient material-property data available for engineering purposes; (6) the administrative burden of obtaining licenses and safety permits; (7) very high costs for large-scale operations; and (8) minimal added value compared to state-of-the-art hydrometallurgical processes. Our belief is that innovations in hydrometallurgy based on ILs or DESs are unlikely. Instead, we should be aiming for a deeper understanding of hydrometallurgical processes at the molecular level. This is because advances are more likely to derive from the refocused efforts of experienced IL/DES researchers investigating the speciation and chemical thermodynamics of hydrometallurgical solutions, which will then hasten the transition from linear to low-energy-input, circular hydrometallurgy.

Tài liệu tham khảo

Welton T (2018) Ionic liquids: a brief history. Biophys Rev 10:691–706. https://doi.org/10.1007/s12551-018-0419-2 Anastas PT, Warner JC (1998) Principles of green chemistry. Oxford University Press, Oxford Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083. https://doi.org/10.1021/cr980032t Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68:351–356. https://doi.org/10.1002/(SICI)1097-4660(199704)68:4%3c351::AID-JCTB613%3e3.0.CO;2-4 Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150. https://doi.org/10.1039/b006677j Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789. https://doi.org/10.1002/1521-3773(20001103)39:21%3c3772::AID-ANIE3772%3e3.0.CO;2-5 Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248:2459–2477. https://doi.org/10.1016/j.ccr.2004.04.015 Ma Z, Yu J, Dai S (2010) Preparation of inorganic materials using ionic liquids. Adv Mater 22:261–285. https://doi.org/10.1002/adma.200900603 Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988–4992. https://doi.org/10.1002/anie.200460091 Endres F (2002) Ionic liquids: solvents for the electrodeposition of metals and semiconductors. ChemPhysChem 3:144–154. https://doi.org/10.1002/1439-7641(20020215)3:2%3c144::AID-CPHC144%3e3.0.CO;2-# MacFarlane DR, Tachikawa N, Forsyth M et al (2014) Energy applications of ionic liquids. Energy Environ Sci 7:232–250. https://doi.org/10.1039/C3EE42099J Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975. https://doi.org/10.1021/ja025790m Binnemans K, Jones PT (2017) Solvometallurgy: an emerging branch of extractive metallurgy. J Sustain Metall 3:570–600. https://doi.org/10.1007/s40831-017-0128-2 Park J, Jung Y, Kusumah P et al (2014) Application of ionic liquids in hydrometallurgy. Int J Mol Sci 15:15320–15343. https://doi.org/10.3390/ijms150915320 Quijada-Maldonado E, Olea F, Sepúlveda R et al (2020) Possibilities and challenges for ionic liquids in hydrometallurgy. Sep Purif Technol 251:117289. https://doi.org/10.1016/j.seppur.2020.117289 Binnemans K (2007) Lanthanides and actinides in ionic liquids. Chem Rev 107:2592–2614. https://doi.org/10.1021/cr050979c Richter J, Ruck M (2020) Synthesis and dissolution of metal oxides in ionic liquids and deep eutectic solvents. Molecules 25:8. https://doi.org/10.3390/molecules25010078 Tian G, Liu H (2022) Review on the mineral processing in ionic liquids and deep eutectic solvents. Miner Process Extr Metall Rev 1–24. https://doi.org/10.1080/08827508.2022.2123322 Abbott A, Capper G, Davies D, et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 70–71. https://doi.org/10.1039/b210714g Smith EL, Abbott AP, Ryder KS (2014) Deep Eutectic Solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p Abbott A, Capper G, Swain B, Wheeler D (2005) Electropolishing of stainless steel in an ionic liquid. Trans Inst Met 83:51–53. https://doi.org/10.1179/002029605X17657 Abbott AP (2022) Deep eutectic solvents and their application in electrochemistry. Curr Opin Green Sustain Chem 36:100649. https://doi.org/10.1016/j.cogsc.2022.100649 Abbott AP, Frisch G, Gurman SJ et al (2011) Ionometallurgy: designer redox properties for metal processing. Chem Commun 47:10031–10033. https://doi.org/10.1039/c1cc13616j Abbott A, Collins J, Dalrymple I et al (2009) Processing of electric arc furnace dust using deep eutectic solvents. Aust J Chem 62:341–347. https://doi.org/10.1071/CH08476 Abbott AP, Frisch G, Hartley J, Ryder KS (2011) Processing of metals and metal oxides using ionic liquids. Green Chem 13:471–481. https://doi.org/10.1039/c0gc00716a Abbott A, Capper G, Davies D, Shikotra P (2006) Processing metal oxides using ionic liquids. Miner Process Extr Metall 115:15–18. https://doi.org/10.1179/174328506X91293 Abbott A, Al-Bassam A, Goddard A et al (2017) Dissolution of pyrite and other Fe-S-As minerals using deep eutectic solvents. Green Chem 19:2225–2233. https://doi.org/10.1039/c7gc00334j Abbott AP, Harris RC, Holyoak F et al (2015) Electrocatalytic recovery of elements from complex mixtures using deep eutectic solvents. Green Chem 17:2172–2179. https://doi.org/10.1039/c4gc02246g Jenkin GRT, Al-Bassam AZM, Harris RC et al (2016) The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals. Miner Eng 87:18–24. https://doi.org/10.1016/j.mineng.2015.09.026 Zante G, Boltoeva M (2020) Review on hydrometallurgical recovery of metals with deep eutectic solvents. Sustain Chem 1:238–255. https://doi.org/10.3390/suschem1030016 Dias RM, da Costa MC, Jimenez YP (2022) Perspectives of using DES-based systems for solid-liquid and liquid-liquid extraction of metals from E-waste. Minerals 12:710. https://doi.org/10.3390/min12060710 Tran MK, Rodrigues M-TF, Kato K et al (2019) Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat Energy 4:339–345. https://doi.org/10.1038/s41560-019-0368-4 Peeters N, Binnemans K, Riaño S (2020) Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents. Green Chem 22:4210–4221. https://doi.org/10.1039/D0GC00940G Padwal C, Pham HD, Jadhav S et al (2022) Deep eutectic solvents: green approach for cathode recycling of Li-Ion batteries. Adv Energy Sustain Res 3:2100133. https://doi.org/10.1002/aesr.202100133 Schiavi PG, Altimari P, Branchi M et al (2021) Selective recovery of cobalt from mixed lithium ion battery wastes using deep eutectic solvent. Chem Eng J 417:129249. https://doi.org/10.1016/j.cej.2021.129249 Wang Z, Li S, Li T et al (2022) Deep Eutectic Solvents (DESs) for green recycling of wasted Lithium-Ion Batteries (LIBs): progress on pushing the overall efficiency. Min Metall Explor 39:2149–2165. https://doi.org/10.1007/s42461-022-00660-7 Dupont D, Binnemans K (2015) Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3:Eu3+ from lamp phosphor waste. Green Chem 17:856–868. https://doi.org/10.1039/c4gc02107j Dupont D, Binnemans K (2015) Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2N]. Green Chem 17:2150–2163. https://doi.org/10.1039/c5gc00155b Li X, Li Z, Orefice M, Binnemans K (2019) Metal recovery from spent samarium-cobalt magnets using a trichloride ionic liquid. ACS Sustain Chem Eng 7:2578–2584. https://doi.org/10.1021/acssuschemeng.8b05604 Davris P, Balomenos E, Panias D, Paspaliaris I (2016) Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy 164:125–135. https://doi.org/10.1016/j.hydromet.2016.06.012 Palden T, Regadio M, Onghena B, Binnemans K (2019) Selective metal recovery from jarosite residue by leaching with acid-equilibrated ionic liquids and precipitation-stripping. ACS Sustain Chem Eng 7:4239–4246. https://doi.org/10.1021/acssuschemeng.8b05938 Rodriguez Rodriguez N, Machiels L, Onghena B et al (2020) Selective recovery of zinc from goethite residue in the zinc industry using deep-eutectic solvents. RSC Adv 10:7328–7335. https://doi.org/10.1039/D0RA00277A Winterton N (2021) The green solvent: a critical perspective. Clean Technol Environ Policy 23:2499–2522. https://doi.org/10.1007/s10098-021-02188-8 Kunz W, Häckl K (2016) The hype with ionic liquids as solvents. Chem Phys Lett 661:6–12. https://doi.org/10.1016/j.cplett.2016.07.044 Foltova SS, Vander Hoogerstraete T, Banerjee D, Binnemans K (2019) Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Sep Purif Technol 210:209–218. https://doi.org/10.1016/j.seppur.2018.07.069 Pereiro AB, Araújo JMM, Oliveira FS et al (2012) Solubility of inorganic salts in pure ionic liquids. J Chem Thermodyn 55:29–36. https://doi.org/10.1016/j.jct.2012.06.007 Schaltin S, Nockemann P, Thijs B et al (2007) Influence of the anion on the electrodeposition of cobalt from imidazolium ionic liquids. Electrochem Solid-State Lett 10:D104–D107. https://doi.org/10.1149/1.2760185 Wellens S, Brooks NR, Thijs B et al (2014) Carbene formation upon reactive dissolution of metal oxides in imidazolium ionic liquids. Dalton Trans 43:3443–3452. https://doi.org/10.1039/C3DT53024H Nockemann P, Thijs B, Pittois S et al (2006) Task-specific ionic liquid for solubilizing metal oxides. J Phys Chem B 110:20978–20992. https://doi.org/10.1021/jp0642995 Davris P, Marinos D, Balomenos E et al (2018) Leaching of rare earth elements from `Rodberg’ ore of Fen carbonatite complex deposit, using the ionic liquid HbetTf2N. Hydrometallurgy 175:20–27. https://doi.org/10.1016/j.hydromet.2017.10.031 Huang Y, Duan Z, Bai N et al (2021) Highly selective dissolution and synchronous extraction of zinc from zinc-cobalt slag by an ionic liquid [Hbet][Tf2N]–H2O system: A novel method for separating zinc and cobalt. J Clean Prod 315:128301. https://doi.org/10.1016/j.jclepro.2021.128301 Luo D, Zhu N, Li Y et al (2019) Simultaneous leaching and extraction of indium from waste LCDs with acidic ionic liquids. Hydrometallurgy 189:105146. https://doi.org/10.1016/j.hydromet.2019.105146 Mawire G, van Dyk L (2018) Extraction of scandium (Sc) using a task-specific ionic liquid protonated betaine Bis(Trifluoromethylsulfonyl)Imide [Hbet][Tf2N]. In: Davis BR, Moats MS, Wang S et al (eds) Extraction 2018. Springer, Cham, pp 2723–2734 Nockemann P, Thijs B, Parac-Vogt TN et al (2008) Carboxyl-functionalized task-specific ionic liquids for solubilizing metal oxides. Inorg Chem 47:9987–9999. https://doi.org/10.1021/ic801213z Dupont D, Raiguel S, Binnemans K (2015) Sulfonic acid functionalized ionic liquids for dissolution of metal oxides and solvent extraction of metal ions. Chem Commun 51:9006–9009. https://doi.org/10.1039/c5cc02731d Dupont D, Renders E, Binnemans K (2016) Alkylsulfuric acid ionic liquids: a promising class of strongly acidic room-temperature ionic liquids. Chem Commun 52:4640–4643. https://doi.org/10.1039/c6cc00094k Dupont D, Renders E, Raiguel S, Binnemans K (2016) New metal extractants and super-acidic ionic liquids derived from sulfamic acid. Chem Commun 52:7032–7035. https://doi.org/10.1039/c6cc02350a Hansen BB, Spittle S, Chen B et al (2021) Deep eutectic solvents: a review of fundamentals and applications. Chem Rev 121:1232–1285. https://doi.org/10.1021/acs.chemrev.0c00385 Zhang Q, Vigier KDO, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146. https://doi.org/10.1039/c2cs35178a Francisco M, van den Bruinhorst A, Kroon MC (2013) Low-Transition-Temperature Mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed 52:3074–3085. https://doi.org/10.1002/anie.201207548 Seddon KR, Stark A, Torres M-J (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287. https://doi.org/10.1351/pac200072122275 BASF (2015) Technical Information: Aliquat® 336 Phase Transfer Catalyst (Report No. TI/EVH 0125/4 e) Seddon KR, Stark A, Torres M-J (2002) Viscosity and density of 1-Alkyl-3-methylimidazolium Ionic Liquids. In: Clean solvents. American Chemical Society, pp 34–49 Agieienko V, Buchner R (2019) Densities, viscosities, and electrical conductivities of pure anhydrous reline and its mixtures with water in the temperature range (293.15 to 338.15) K. J Chem Eng Data 64:4763–4774. https://doi.org/10.1021/acs.jced.9b00145 Wellens S, Thijs B, Binnemans K (2012) An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem 14:1657–1665. https://doi.org/10.1039/c2gc35246j Vander Hoogerstraete T, Binnemans K (2014) Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl) phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chem 16:1594–1606. https://doi.org/10.1039/c3gc41577e Vander Hoogerstraete T, Wellens S, Verachtert K, Binnemans K (2013) Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem 15:919–927. https://doi.org/10.1039/c3gc40198g Wellens S, Goovaerts R, Moeller C et al (2013) A continuous ionic liquid extraction process for the separation of cobalt from nickel. Green Chem 15:3160–3164. https://doi.org/10.1039/c3gc41519h Deferm C, Van de Voorde M, Luyten J et al (2016) Purification of indium by solvent extraction with undiluted ionic liquids. Green Chem 18:4116–4127. https://doi.org/10.1039/c6gc00586a Nicol G, Goosey E, Yıldız DŞ et al (2021) Platinum Group Metals Recovery Using Secondary Raw Materials (PLATIRUS): project overview with a focus on processing spent autocatalyst : novel PGM recycling technologies ready for demonstration at next scale. Johnson Matthey Technol Rev 65:127–147. https://doi.org/10.1595/205651321X16057842276133 Riaño S, Sobekova Foltova S, Binnemans K (2020) Separation of neodymium and dysprosium by solvent extraction using ionic liquids combined with neutral extractants: batch and mixer-settler experiments. RSC Adv 10:307–316. https://doi.org/10.1039/C9RA08996A Deferm C, Onghena B, Nguyen VT et al (2020) Non-aqueous solvent extraction of indium from an ethylene glycol feed solution by the ionic liquid Cyphos IL 101: speciation study and continuous counter-current process in mixer-settlers. RSC Adv 10:24595–24612. https://doi.org/10.1039/d0ra04684a Cho C-W, Pham TPT, Zhao Y et al (2021) Review of the toxic effects of ionic liquids. Sci Total Environ 786:147309. https://doi.org/10.1016/j.scitotenv.2021.147309 de Jesus SS, Maciel Filho R (2022) Are ionic liquids eco-friendly? Renew Sust Energ Rev 157:112039. https://doi.org/10.1016/j.rser.2021.112039 Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361–363. https://doi.org/10.1039/B304400A Freire MG, Neves CMSS, Marrucho IM et al (2010) Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J Phys Chem A 114:3744–3749. https://doi.org/10.1021/jp903292n Howlett PC, Izgorodina EI, Forsyth M, MacFarlane DR (2006) Electrochemistry at negative potentials in Bis(trifluoromethanesulfonyl)amide ionic liquids. Z Phys Chem 220:1483–1498. https://doi.org/10.1524/zpch.2006.220.10.1483 De Vos N, Maton C, Stevens CV (2014) Electrochemical stability of ionic liquids: general influences and degradation mechanisms. ChemElectroChem 1:1258–1270. https://doi.org/10.1002/celc.201402086 Mena IF, Diaz E, Palomar J et al (2020) Cation and anion effect on the biodegradability and toxicity of imidazolium– and choline–based ionic liquids. Chemosphere 240:124947. https://doi.org/10.1016/j.chemosphere.2019.124947 Raiguel S, Dehaen W, Binnemans K (2020) Stability of ionic liquids in Brønsted-basic media. Green Chem 22:5225–5252. https://doi.org/10.1039/D0GC01832E Li X, Van den Bossche A, Vander Hoogerstraete T, Binnemans K (2018) Ionic liquids with trichloride anions for oxidative dissolution of metals and alloys. Chem Commun 54:475–478. https://doi.org/10.1039/c7cc08645h Van Doorslaer C, Peeters A, Mertens P et al (2009) Oxidation of cyclic acetals by ozone in ionic liquid media. Chem Commun 6439–6441. https://doi.org/10.1039/B913431J Domínguez CM, Munoz M, Quintanilla A et al (2014) Degradation of imidazolium-based ionic liquids in aqueous solution by Fenton oxidation. J Chem Technol Biotechnol 89:1197–1202. https://doi.org/10.1002/jctb.4366 Whitehead JA, Zhang J, McCluskey A, Lawrance GA (2009) Comparative leaching of a sulfidic gold ore in ionic liquid and aqueous acid with thiourea and halides using Fe(III) or HSO5- oxidant. Hydrometallurgy 98:276–280. https://doi.org/10.1016/j.hydromet.2009.05.012 Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977. https://doi.org/10.1039/C3CS60071H Deferm C, Van den Bossche A, Luyten J et al (2018) Thermal stability of trihexyl(tetradecyl)phosphonium chloride. Phys Chem Chem Phys 20:2444–2456. https://doi.org/10.1039/C7CP08556G Rodriguez Rodriguez N, van den Bruinhorst A, Kollau LJBM et al (2019) Degradation of deep-eutectic solvents based on choline chloride and carboxylic acids. ACS Sust Chem Eng 7:11521–11528. https://doi.org/10.1021/acssuschemeng.9b01378 Wang S, Zhang Z, Lu Z, Xu Z (2020) A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries. Green Chem 22:4473–4482. https://doi.org/10.1039/D0GC00701C Peeters N, Janssens K, de Vos D et al (2022) Choline chloride–ethylene glycol based deep-eutectic solvents as lixiviants for cobalt recovery from lithium-ion battery cathode materials: are these solvents really green in high-temperature processes? Green Chem 24:6685–6695. https://doi.org/10.1039/D2GC02075K Bennett JE (1980) Electrodes for generation of hydrogen and oxygen from seawater. Int J Hydrog Energy 5:401–408. https://doi.org/10.1016/0360-3199(80)90021-X Haerens K, Matthijs E, Binnemans K, Van der Bruggen B (2009) Electrochemical decomposition of choline chloride based ionic liquid analogues. Green Chem 11:1357–1365. https://doi.org/10.1039/B906318H Amphlett J, Choi S (2021) The effect of increasing water content on transition metal speciation in deep eutectic solvents. J Mol Liq 332:115845. https://doi.org/10.1016/j.molliq.2021.115845 Spathariotis S, Peeters N, Ryder KS et al (2020) Separation of iron(III), zinc(II) and lead(II) from a choline chloride–ethylene glycol deep eutectic solvent by solvent extraction. RSC Adv 10:33161–33170. https://doi.org/10.1039/D0RA06091G Chen Y, Mu T (2021) Revisiting greenness of ionic liquids and deep eutectic solvents. Green Chem Eng 2:174–186. https://doi.org/10.1016/j.gce.2021.01.004 Jensen M, Neuefeind J, Beitz J et al (2003) Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange. J Am Chem Soc 125:15466–15473. https://doi.org/10.1021/ja037577b Li Z, Dewulf B, Binnemans K (2021) Nonaqueous solvent extraction for enhanced metal separations: concept, systems, and mechanisms. Ind Eng Chem Res 60:17285–17302. https://doi.org/10.1021/acs.iecr.1c02287 Riaño S, Petranikova M, Onghena B et al (2017) Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets. RSC Adv 7:32100–32113. https://doi.org/10.1039/C7RA06540J Buchner GA, Stepputat KJ, Zimmermann AW, Schomäcker R (2019) Specifying technology readiness levels for the chemical industry. Ind Eng Chem Res 58:6957–6969. https://doi.org/10.1021/acs.iecr.8b05693 De Rose A, Buna M, Strazza C et al (2017) Technology readiness level: guidance principles for renewable energy technologies. European Commission Pateli IM, Abbott AP, Binnemans K, Rodriguez Rodriguez N (2020) Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid–choline chloride. RSC Adv 10:28879–28890. https://doi.org/10.1039/D0RA05508E Dong Q, Muzny CD, Kazakov A et al (2007) ILThermo: a free-access web database for thermodynamic properties of ionic liquids. J Chem Eng Data 52:1151–1159. https://doi.org/10.1021/je700171f NIST (2021) Ionic Liquids Database—ILThermo (v2.0). https://ilthermo.boulder.nist.gov/. Accessed 3 Dec 2022 Zhang S, Lu X, Zhou Q et al (2009) Ionic liquids: physicochemical properties. Elsevier, Amsterdam Zhang S, Zhou Q, Lu X et al (2017) Physicochemical properties of ionic liquid mixtures. Springer, Dordrecht Shiflett MB, Scurto AM (2017) Ionic liquids: current state and future directions. In: Ionic liquids: current state and future directions. American Chemical Society, pp 1–13 Marsh KN, Brennecke JF, Chirico RD et al (2009) Thermodynamic and thermophysical properties of the reference ionic liquid: 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide (including mixtures). Part 1. Experimental methods and results (IUPAC Technical Report). Pure Appl Chem 81:781–790. https://doi.org/10.1351/PAC-REP-08-09-21 Chirico RD, Diky V, Magee JW et al (2009) Thermodynamic and thermophysical properties of the reference ionic liquid: 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide (including mixtures). Part 2. Critical evaluation and recommended property values (IUPAC Technical Report). Pure Appl Chem 81:791–828. https://doi.org/10.1351/PAC-REP-08-09-22 Uerdingen M, Treber C, Balser M et al (2005) Corrosion behaviour of ionic liquids. Green Chem 7:321–325. https://doi.org/10.1039/B419320M Glas D, Hulsbosch J, Dubois P et al (2014) End-of-life treatment of Poly(Vinyl Chloride) and chlorinated polyethylene by dehydrochlorination in ionic liquids. Chemsuschem 7:610–617. https://doi.org/10.1002/cssc.201300970 Binnemans K, Jones PT (2023) The twelve principles of circular hydrometallurgy. J Sustain Metall 9:1–25. https://doi.org/10.1007/s40831-022-00636-3 Lahl U, Hawxwell KA (2006) REACH—the New European Chemicals Law. Environ Sci Technol 40:7115–7121. https://doi.org/10.1021/es062984j European Commission (2022) REACH. https://ec.europa.eu/environment/chemicals/reach/reach_en.htm