Ion‐selective membranes with low plasticizer content: Electroanalytical characterization and biocompatibility studies

Wiley - Tập 28 Số 5 - Trang 591-601 - 1994
Ernö Lindner1, Vasile V. Coșofreţ2, S. Ufer2, Richard P. Buck2, Weiyuan John Kao3, Michael R. Neuman3, James M. Anderson3
1Department of Chemistry, University of North Carolina at Chapel Hill 27599-3290.
2Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599–3290
3Institute of Pathology, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106‐4907

Tóm tắt

AbstractHigh molecular weight poly(vinyl chloride) and aliphatic polyurethane (Tecoflex)‐based ion selective membranes, with normal and reduced amounts of plasticizer, as well as without plasticizer, were tested with respect to their analytical properties, their biocompatibility, and cellular responses. The analytical properties of the membranes did not change significantly within a wide range of polymer to plasticizer rations. However, the membranes with reduced plasticizer content had better adhesive properties, less anion interference, extended life time, and better biocompatibility. Using the cage implant system, the results showed that an increase of plasticizer weight percent in Tecoflex membranes correlated positively with the increase in host inflammatory response up to 14 days of implantation. The results also demonstrated that both PVC and Tecoflex‐based ion‐selective membranes with the most common membrane composition (1:2 polymer to plasticizer ratio) exhibited a similar acute inflammatory response, but the PVC‐based membrane elicited a reduced chronic inflammatory response when compared with the Tecoflex‐based membrane. © 1994 John Wiley & Sons, Inc.

Từ khóa


Tài liệu tham khảo

Oesch U., 1986, Ionselective membrane electrodes for clinical use, Clin. Chem., 32, 1448, 10.1093/clinchem/32.8.1448

Widdowson G., 1988, Electrode technology in clinical chemistry today and tomorrow, Laboratory Medicine, 19, 483, 10.1093/labmed/19.8.483

Osswald H. F., 1979, On‐line continuous potentimetric measurement of potassium concentration in whole blood during open‐heart surgery, Clin. Chem., 25, 39, 10.1093/clinchem/25.1.39

Schindler J. G., 1979, Kontinuierliche intraoperative Meßwertregistrierung von Na+, K+ und Ca+ mit Carrier‐Membran‐Disk‐Elektroden, J. Clin. Chem., Clin. Biochem., 17, 573

10.1007/BF01684390

Haase E. A., 1992, Continuous monitoring of electrolytes during hemodialysis, GIT Labor‐Medizin, 15, 84

10.2116/analsci.8.553

Simon W., 1991, Development and application of ion‐selective electrodes, Int. Lab., 35

10.1007/978-3-642-70518-2_46

10.1021/ac00165a021

10.1007/978-1-4757-6257-0

10.1021/ac50054a024

10.1021/ac00006a009

Gettes L. S., 1992, The Heart and Cardiovascular System, 2021

Johnson T. A., 1990, Use of extracellular K+ and H+ ion‐selective electrodes, Am. J. Physiol., 258, H1224

10.1039/ft9938900361

10.1007/BF00321250

10.1021/ac00017a003

10.1016/0022-0728(86)90109-9

10.1016/0039-9140(93)80151-G

10.1177/088532828800300202

Lelah M. D., 1986, Polyurethane in Medicine

10.1002/jbm.820100413

10.1002/jbm.820170209

10.1021/ed051p541

10.1351/pac197648010127

10.1351/pac197951091913

Meier P. C., 1980, Medical and Biological Applications of Electrochemical Devices, 13

10.1007/BF01244839

10.1016/0003-2670(93)80211-3

Kim K.‐S., 1988, Elasto‐plastic analysis of the peel test for thin film adhesion, Trans. Am. Soc. of Mech. Eng., 110, 266

10.1016/S0003-2670(00)84189-6

10.1021/ac00126a034

Ammann D., 1981, Ion‐Selective Electrodes 3, 179

10.1021/ac60334a026

10.1080/00032717408059014

Sears J. K., 1989, Encyclopedia of Polymer Science and Engineering (Supplement), 568

10.1016/0022-0728(92)80142-Q

10.1021/ac00042a004

10.1016/0022-0728(89)80039-7

10.1021/ac00155a004

10.1021/ac00045a010

10.1007/978-3-642-52507-0