Ion mobility–mass spectrometry

Journal of Mass Spectrometry - Tập 43 Số 1 - Trang 1-22 - 2008
Abu B. Kanu1, Prabha Dwivedi1, Maggie Tam1, Laura M. Matz1, Herbert H. Hill1
1Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA,

Tóm tắt

AbstractThis review article compares and contrasts various types of ion mobility–mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value‐added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass‐mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift‐time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential‐mobility spectrometry (DMS) which is also called field‐asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling‐wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross‐sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous‐ion monitoring capability as well as orthogonal ion mobility separation in which high‐separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility–mass spectrometry (IMMS) are provided. Copyright © 2008 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

Stach J, 2002, Ion mobility spectrometry—basic elements and applications, International Journal for Ion Mobility Spectrometry, 5, 1

Collins DC, 2002, Developments in ion mobility spectrometry‐mass spectrometry, Analytical and Bioanalytical Chemistry, 372, 66, 10.1007/s00216-001-1195-5

10.1366/0003702991947847

10.1002/(SICI)1520-6521(1997)1:3<119::AID-FACT2>3.0.CO;2-S

10.1016/S0584-8547(02)00110-6

10.1039/b404531a

Shumate CB, 1989, Department of Chemistry, 158

10.1021/ac00181a021

10.1021/ac0005619

10.1021/ac980414z

10.1063/1.1147873

10.1021/ac9908952

10.1021/ac990601c

Clemmer DE, 1995, Naked protein conformations: cytochrome c in the gas phase, Journal of the American Society for Mass Spectrometry, 117, 10141

10.1021/ac0608772

10.1021/pr060232i

10.1016/j.ijms.2004.10.003

10.1016/S1044-0305(03)00002-3

10.1007/s002160000669

10.1039/b508644b

10.1021/ac970526a

Dwivedi P, 2007, Metabolic profiling by ion mobility mass spectrometry (IMMS), Metabolomics

10.1016/0021-8502(71)90021-8

10.1021/ac050278f

10.1016/S1387-3806(01)00384-0

10.1039/b502215k

10.1002/1520-6521(2000)4:4<157::AID-FACT2>3.0.CO;2-#

10.1021/ac9907235

10.1002/mcs.1220060511

10.1021/jp970217o

10.1021/ac990343j

10.1021/ac001147b

10.1016/j.jasms.2007.09.017

10.1021/ac0005619

10.1016/S1044-0305(01)00348-8

10.1002/rcm.1419

10.1016/j.ijms.2004.10.003

10.1126/science.259.5099.1300

10.1103/PhysRevLett.67.2994

10.1038/363060a0

10.1093/chromsci/8.6.330

10.1109/19.744345

Solis AA, 2006, Designing the measurement cell of a swept‐field differential aspiration condenser, Revista Mexicana De Fisica, 52, 322

10.1016/0168-1176(93)87062-W

10.1002/rcm.1641

10.1103/PhysRev.160.130

10.1103/PhysRev.164.62

10.1063/1.1672745

Martin DW, 1970, Mass Spectrometric Studies of Mobilities, Diffusion, and Reactions of Ions in Gases, 45

10.1016/0301-0104(81)80123-1

10.1016/j.jasms.2005.04.007

10.1002/rcm.2928

10.1021/ac052208e

10.1021/ac60357a043

10.1063/1.1717656

10.1103/PhysRev.178.240

10.1021/jp034850n

10.1021/ac991409d

Spangler GE, 1984, Developments in ion mobility spectrometry, ISA Transactions, 23, 17

10.1039/b706039d

Hill HH, 1992, Instrumentation for Trace Organic Monitoring, 49

10.1016/S0039-9140(00)00565-8

10.1080/10408349108055024

Conrad FJ, 1990, An update on vapor detection of explosives, Nuclear Materials Management, 19, 902

10.1080/05704920600663469

10.1021/ac050615k

10.1016/j.snb.2007.02.038

10.2116/bunsekikagaku.55.191

10.1063/1.2723742

10.1016/S0021-9673(04)01478-5

Carnahan BL, 1995, Ion Mobility Spectrometer, 15

Buryakov IA, 1991, Separation of ions according to their mobility in a strong alternating current electric field, Pis'ma v Zhurnal Tekhnicheskoi Fiziki, 17, 60

Buryakov IA, 2001, Ion non‐linear drift spectrometer (INLDS)—a selective detector for high‐speed gas chromatography, International Journal for Ion Mobility Spectrometry, 4, 13

10.1016/j.ijms.2006.07.021

10.1126/science.1120177

10.1021/ac050871x

10.1201/9781420038972

10.1103/PhysRev.164.71

10.1063/1.1673936

10.1103/PhysRev.171.94

10.1063/1.1673592

10.1093/chromsci/9.7.390

10.1021/ac50002a017

10.1021/ac50001a056

10.1103/PhysRevB.39.11168

10.1016/1044-0305(90)85036-L

10.1063/1.443758

Ruotolo BT, 2002, Peak capacity of ion mobiity mass spectrometry: separation of peptides in helium buffer gas, Journal of Chromatography, 782, 385

10.1021/ac010807p

10.1002/rcm.495

10.1016/j.ijms.2006.09.005

10.1021/ac061567m

10.1021/jp056165h

10.1021/pr049877d

10.1016/j.ijms.2006.07.021

10.1016/S1387-3806(01)00583-8

10.1021/pr060055l

10.1002/jms.1254

10.1021/ac050871x

10.1021/ac060283z

10.1021/ac980414z

10.1021/ac50001a018

10.1002/jms.994

10.1021/ac051743b

10.1016/j.jasms.2007.03.031

10.1063/1.1149255

10.1016/j.jasms.2007.06.013

Kapron J, 2006, Selectivity Improvement for Drug Urinalysis using FAIMS and H‐SRM on the Finnigan TSQ Quantum Ultra

10.1021/ac050700s

10.1063/1.1288235

Tang X, 2006, Design and performance of an atmospheric pressure ion mobility Fourier transform ion cyclotron resonance mass spectrometer, Rapid Communications in Mass Spectrometry, 21, 1

10.1016/j.jasms.2005.04.007

10.1021/ac051709x

10.1103/PhysRevLett.73.2063

10.1021/ja00029a044

10.1126/science.260.5113.1446

10.1021/j100133a011

10.1063/1.2713424

10.1021/j100100a002

10.1016/S0168-1176(97)00105-5

10.1016/j.jasms.2005.01.010

10.1016/j.jasms.2007.04.007

10.1016/j.jasms.2006.10.008

10.1021/ac971869b

Lee D‐S, 1999, Detection of carbohydrates by electrospray ionization‐ion mobility spectrometry following microbore high‐performance liquid chromatography, Journal of Chromatography, 822, 10

10.1039/b508644b

10.1016/j.jasms.2004.10.006

10.1002/rcm.2941

10.1021/ac010837s

10.1021/ac0108562

10.1021/pr050037o

10.1021/pr060232i

Jarrold MF, 1997, Conformations, Unfolding, and Refolding of Apomyoglobin in Vacuum: An Activation Barrier for Gas‐Phase Protein Folding, Journal of the American Society for Mass Spectrometry, 119, 2987

10.1139/v05-215

10.1016/j.jasms.2005.04.013

10.1021/jp052663e

10.1016/j.jasms.2005.04.007

10.1021/jp056165h

10.1016/j.jasms.2005.03.002

10.1016/j.ijms.2006.01.054

10.1126/science.1120177

10.1016/S0168-1176(97)00182-1

10.1021/ar960081x

10.1021/ja0381353

10.1021/pr0497879

10.1016/j.jasms.2004.10.002

10.1002/rcm.2505

10.1007/s00216-002-1363-2

WoodsAS UgarovM EganT KoomenJ GilligKJ FuhrerK GoninM SchultzJA.Lipid/peptide/nucleotide 2004.

10.1016/j.jasms.2005.03.012

Dwivedi P, 2007, Metabolic profiling by ion mobility mass spectrometry (IMMS), Metabolomics

10.1016/S0021-9673(00)00799-8

10.1021/ac034349r

10.1002/rcm.2515

10.1002/rcm.2016

10.1021/ja0622711

Hill HH, 2007, Reduction in false positive responses for explosives detection using ion mobility mass spectrometry (IMMS), Bulletin of Laser and Spectroscopy Society of India, 14, 92

10.1021/ac025687f

10.1021/ac060384x

10.1039/b002306j