Ion irradiation stability of multilayered AlN/TiN nanocomposites

Journal Physics D: Applied Physics - Tập 43 Số 6 - Trang 065302 - 2010
M. Milosavljević1, D. Peruško2, V. Milinović2, Ž. Stojanović2, A. Zalar3, Janez Kovač3, C. Jeynes1
1University of Surrey Ion Beam Centre, Guildford GU2 7XH, UK
2VINČA Institute of Nuclear Sciences, PO Box 522, Belgrade 11001, Serbia
3Jožef Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia

Tóm tắt

Structural changes in multilayered AlN/TiN nanocomposites upon Ar+ ion irradiation were investigated. Reactive sputtering was used to deposit (AlN/TiN) × 5 multilayers on Si(1 0 0), to a total thickness of ∼270 nm. Argon was implanted at 200 keV, to 5 × 1015–4 × 1016 ions cm−2. The as-deposited multilayers had a very fine columnar nanocrystalline structure, the width of individual grains was up to ∼10 nm. It was found that this immiscible system exhibits a high ion radiation stability, the AlN and TiN layers remaining well separated, with sharp interfaces. Ion irradiation induced small local density changes and only a slight increase in individual grains, in the region where most damage was deposited by the impact ions. For the highest irradiation fluence there was also some migration of Ti into AlN in this region, which was assigned to excess nitrogen within the AlN layers. Due to these small structural changes, ion irradiation enhanced the mechanical strength of the multilayered nanocomposites.

Từ khóa


Tài liệu tham khảo

1996, Science, 273, 889, 10.1126/science.273.5277.889

1987, J. Appl. Phys., 62, 481, 10.1063/1.339770

1996, Appl. Phys. Lett., 68, 1211, 10.1063/1.115972

1996, Phys. Rev. Lett., 78, 1743, 10.1103/PhysRevLett.78.1743

2007, JOM J. Min. Met. Mater. Soc., 59, 62, 10.1007/s11837-007-0120-6

2008, Phys. Rev. Lett., 100, 136102, 10.1103/PhysRevLett.100.136102

2005, J.Appl. Phys., 98, 123516, 10.1063/1.2149168

2007, J. Appl. Phys., 102, 074310, 10.1063/1.2786713

1999, J. Appl. Phys., 86, 4847, 10.1063/1.371451

1997, J. Appl. Phys., 82, 3815, 10.1063/1.365744

1997, Appl. Phys. Lett., 70, 1098, 10.1063/1.118496

2007, Appl. Phys. Lett., 90, 263115, 10.1063/1.2753098

2008, Nucl. Instrum. Methods Phys. Res., 266, 921, 10.1016/j.nimb.2008.01.039

2008, Nucl. Instrum. Methods Phys. Res., 266, 1749, 10.1016/j.nimb.2008.02.034

1998, J. Vac. Sci. Technol., 16, 3341, 10.1116/1.581542

2006, Surf. Coat. Technol., 201, 4062, 10.1016/j.surfcoat.2006.08.041

1985

2004, Nucl. Instrum. Methods Phys. Res., 219-220, 405, 10.1016/j.nimb.2004.01.091

1997, Appl. Phys. Lett., 71, 291, 10.1063/1.119524

2003, J. Phys. D: Appl. Phys., 36, R97, 10.1088/0022-3727/36/7/201

1995

1992, J. Mater. Res., 7, 613, 10.1557/JMR.1992.0613

2007, Thin Solid Films, 516, 345, 10.1016/j.tsf.2007.06.135

1981, Nucl. Instrum. Methods, 182/183, 25, 10.1016/0029-554X(81)90668-6

1985, Nucl. Instrum. Methods Phys. Res., 7/8, 657, 10.1016/0168-583X(85)90450-1

1990, Appl. Phys. Lett., 57, 1407, 10.1063/1.103449

1994, Mater. Sci. Eng., 12, 1, 10.1016/0927-796X(94)90005-1

1994, Mater. Sci. Eng., 12, 53, 10.1016/0927-796X(94)90001-9

2008, Nucl. Instrum. Methods Phys. Res., 266, 2507, 10.1016/j.nimb.2008.03.032