Góc nhìn được mời: Góc nhìn thủy văn về ngưỡng cường độ - thời gian mưa đối với sự khởi phát sạt lở đất: đề xuất ngưỡng thủy-meteo
Tóm tắt
Tóm tắt. Nhiều vụ sạt lở đất nông và dòng chảy sỏi được khởi phát bởi mưa. Do đó, đánh giá nguy cơ sạt lở khu vực thường dựa trên các ngưỡng cường độ - thời gian (ID) mưa thu được từ thực nghiệm và các danh mục sạt lở đất. Thông thường, hai đặc điểm của các sự kiện mưa được vẽ và gán nhãn với sự xuất hiện hoặc không xuất hiện của sạt lở (nông). Sau đó, một đường phân cách hoặc khu vực được vẽ, chủ yếu trong không gian logarit. Bối cảnh thực tiễn của ID là thường chỉ có thông tin khí tượng có sẵn khi phân tích sự xuất hiện (không) của sạt lở nông và cùng lúc đó, thông tin về mưa có thể là một dấu hiệu tốt cho cả yếu tố kích hoạt khí tượng và nguyên nhân thủy văn. Mặc dù đã được áp dụng trong nhiều nghiên cứu trường hợp, cách tiếp cận này gặp phải nhiều kết quả dương giả cũng như sự hiểu biết hạn chế về quá trình vật lý. Một số bước đầu tiên hướng tới một cách tiếp cận dựa trên thủy văn hơn đã được đề xuất trong quá khứ, nhưng những nỗ lực này đã nhận được sự theo dõi hạn chế. Do đó, mục tiêu của bài báo của chúng tôi là (a) phân tích một cách có phê phán khái niệm ngưỡng ID mưa đối với sạt lở nông và dòng chảy sỏi từ quan điểm thủy-khí tượng và (b) đề xuất một khuôn khổ khái niệm kích hoạt - nguyên nhân cho đánh giá nguy cơ thủy-khí tượng khu vực dựa trên các ví dụ được công bố và thảo luận liên quan. Chúng tôi thảo luận về các ngưỡng ID liên quan đến thời gian quay lại của mưa, vật lý đất, độ dốc và cân bằng nước lưu vực. Với bài báo này, chúng tôi nhằm đóng góp vào việc phát triển mô hình khái niệm mạnh mẽ hơn cho đánh giá nguy cơ sạt lở khu vực dựa trên sự hiểu biết về quá trình vật lý và dữ liệu thực nghiệm.
Từ khóa
Tài liệu tham khảo
Anagnostopoulos, G. G., Fatichi, S., and Burlando, P.: An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions, Water Resour. Res., 51, 7501–7523, https://doi.org/10.1002/2015WR016909, 2015.
Anderson, M. G. and Lloyd, D. M.: Using a combined hydrology stability model to develop cut slope design charts, P. I. Civil. Eng., 91, 705–718, https://doi.org/10.1680/iicep.1991.17486, 1991.
Aristizábal, E., Ignacio Vélez, J., Martínez, H. E., and Jaboyedoff, M.: SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins, Landslides, 13, 497–517, https://doi.org/10.1007/s10346-015-0580-7, 2016.
Arnone, E., Noto, L. V., Lepore, C., and Bras, R. L.: Physically-based and distributed approach to analyze rainfall-triggered landslides at watershed scale, Geomorphology, 133, 121–131, 2011.
Baum, R. L. and Godt, J. W.: Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259–272, https://doi.org/10.1007/s10346-009-0177-0, 2010.
Baum, R. L., Savage, W. Z., and Godt, J. W.: TRIGRS – A FORTRAN program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0. US Geological Survey Open-File Rep 2008-1159, available at: http://pubs.er.usgs.gov/publication/ofr20081159 (last access: 21 December 2017), 2008.
Bernard, M. M.: Formulas for rainfall intensities of long duration, T. Am. Soc. Civ. Eng., 96, 592–606, 1932.
Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res., 117, F04006, https://doi.org/10.1029/2012JF002367, 2012.
Bogaard, T. A., Maharjan, L. D., Maquaire, O., Lissak, C., and Malet, J.-P.: Identification of hydro-meteorological triggers for Villerville coastal landslide, Vol. 5 of Landslide Science and Practice, edited by: Margottini, C., Canuti, P, and Sassa, K., 141–145 ISBN: 978-3-642-31309-7 (Print) 978-3-642-31310-3 (Online), Springer, Berlin Proceedings of the Second World Landslide Forum, 3–7 October 2011, Rome, Italy, 2013.
Bogaard, T. A. and Greco R.: Landslide hydrology: from hydrology to pore pressure, WIREs Water, 3, 439–459, https://doi.org/10.1002/wat2.1126, 2015.
Borga, M., Dalla Fontana, G., Da Ros, D., and Machi, D. L.: Shallow landslide hazard assessment using a physically based model and digital elevation data, Environ. Geol., 35, 81–88, https://doi.org/10.1007/s002540050295, 1998.
Burton, A. and Bathurst, J.: Physically based modelling of shallow landslide sediment yield at a catchment scale. Environ. Geol., 35, 89–99, https://doi.org/10.1007/s002540050296, 1998.
Caine, N: The rainfall intensity: duration control of shallow landslides and debris flows, Geogr. Ann. A, 62, 23–27, 1980.
Chacón, J., Irigaray, C., Fernández, T., and El Hamdouni, R.: Engineering geology maps: landslides and geographical information systems, B. Eng. Geol. Environ., 65, 341–411, https://doi.org/10.1007/s10064-006-0064-z, 2006.
Chang, K. B., Lai, S. H., and Othman, F.: Comparison of Annual Maximum and Partial Duration Series for Derivation of Rainfall Intensity-Duration-Frequency Relationships in Peninsular Malaysia, J. Hydrol. Eng., 21, 05015013, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001262, 2015.
Chirico, G. B., Claps, P., Rossi, F., and Villani, P.: Hydrological condition leading to debris-flow initiation in the Campanian volcanoclastic soils, in: Mediterranean Storms: proceedings of the EGS Plinius conference, Maratea, Italy, edited by: Claps, P. and Siccardi, F., October 1999, 473–484, Editoriale Bios, Cosenza, Italy, 2000.
Chitu, Z., Bogaard, T. A., Busuioc, A., Burcea, S., Sandric, I., and Adler, M.-J.: Identifying hydrological pre-conditions and rainfall triggers of slope failures at catchment scale for 2014 storm events in the Ialomita Subcarpathians, Romania, Landslides, 14, 419–434, https://doi.org/10.1007/s10346-016-0740-4, 2017.
Chleborad, A. F., Baum, R. L., and Godt, J. W.: Rainfall Thresholds for Forecasting Landslides in the Seattle, Washington, Area – Exceedance and Probability, Geological Survey Open-File Report 2006–1064, available at: http://pubs.er.usgs.gov/publication/ofr20061064 (last access: 21 December 2017), 2006.
Chleborad, A. F., Baum, R. L., Godt, J. W., and Powers, P. S.: A prototype for forecasting landslides in the Seattle, Washington, Area, Reviews in Engineering Geology, 20, 103–120, https://doi.org/10.1130/2008.4020(06), 2008.
Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied Hydrology, McGraw-Hill Publishing Company, Singapore, ISBN: 0071001743, 1988.
Ciach, G. J. and Krajewski, W. F.: Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma, Adv. Water Res., 29, 1450–1463, https://doi.org/10.1016/j.advwatres.2005.11.003, 2006.
Ciavolella, M., Bogaard, T. A., Gargano, R., and Greco, R.: Is there predictive power in hydrological catchment information for regional landslide hazard assessment?, Proced. Earth Plan. Sc., 16, 195–203, https://doi.org/10.1016/j.proeps.2016.10.021, 2016.
Comegna, L., Damiano, E., Greco, R., Guida, A., Olivares, L., and Picarelli, L.: Field hydrological monitoring of a sloping shallow pyroclastic deposit, Can. Geotech. J., 53, 1125–1137, https://doi.org/10.1139/cgj-2015-0344, 2016.
Crozier, M. J.: Prediction of rainfall-triggered landslides: a test of the antecedent water status model, ESPL, 24, 825–833, 1999.
Crozier, M. J. and Eyles, R. J.: Assessing the probability of rapid mass movement, Proceedings of the Third Australia-New Zealand Conference on Geomechanics, New Zealand Institute of Engineers, Proceedings of Technical Groups, 6, 47–53, 1980.
Damé, R. de C. F., Teixeira-Gandra, C. F. A., Guedes, H. A. S., da Silva, G. M., and da Silveira, S. C. R.: Intensity–Duration–Frequency relationships: stochastic modeling and disaggregation of daily rainfall in the lagoa Mirim watershed, Rio Grande do Sul, Brazil, Eng. Agric., 36, 492–502, https://doi.org/10.1590/1809-4430-Eng.Agric.v36n3p492-502/2016, 2016.
Damiano, E., Olivares, L., and Picarelli, L.: Steep-slope monitoring in unsaturated pyroclastic soils, Eng. Geol. 137–138, 1–12, 2012.
Destro, E., Marra F., Nikolopoulos, E. I., Zoccatelli, D. Creutin, J. D., and Borga, M.: Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall return period, Geomorphology, 278, 269–279, https://doi.org/10.1016/j.geomorph.2016.11.019, 2017.
D'Odorico, P., Fagherazzi, S., and Rigon, R.: Potential for landsliding: Dependence on hyetograph characteristics, J. Geophys. Res., 110, F01007, https://doi.org/10.1029/2004JF000127, 2005.
Elsebaie, I. H.: Developing rainfall intensity–duration–frequency relationship for two regions in Saudi Arabia, Journal of King Saud University-Engineering Sciences, 24, 131–140, 2012.
Fan, L., Lehmann, P., and Or, D.: Effects of Soil Spatial Variability at the Hillslope and Catchment Scales on Characteristics of Rainfall-Induced Landslides, Water Resour. Res., 52, 1781–1799, https://doi.org/10.1002/2015WR017758, 2016.
Frattini, P., Crosta, G. B., Fusi, N., and Dal Negro, P.: Shallow landslides in pyroclastic soils: a distributed modelling approach for hazard assessment, Eng. Geol., 73, 277–295, 2004.
Frattini, P., Crosta, G., and Sosio, R.: Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides, Hydrol. Process. 23, 1444–1460, https://doi.org/10.1002/hyp.7269, 2009.
Gabet, E. J., Burbank, D. W., Putkonen, J. K., Pratt-Sitaula, B. A., and Ojha, T.: Rainfall thresholds for landsliding in the Himalayas of Nepal, Geomorphology 63, 131–143, https://doi.org/10.1016/j.geomorph.2004.03.011, 2004.
Glade, T.: Modelling landslide-triggering rainfalls in different regions in New Zealand – the soil water status model, Z. Geomorphol., 122, 63–84, 2000.
Glade, T., Crozier, M., Smith, P.: Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “ antecedent daily rainfall model”, Pure and Appl. Geophys., 157, 1059–1079, 2000.
Godt, J. W., Baum, R. L., and Chleborad, A. F.: Rainfall characteristics for shallow landsliding in Seattle, Washington, USA, Earth Surf. Proc. Land., 31, 97–110, https://doi.org/10.1002/esp.1237, 2006.
Greco, R. and Bogaard, T. A.: The influence of non-linear hydraulic behavior of slope soil covers on rainfall intensity-duration thresholds. Landslides and Engineered Slopes. Experience, Theory and Practice – edited by: Aversa, S., Cascini, L., Picarelli, L., and Scavia, C., © 2016 Associazione Geotecnica Italiana, Rome, Italy, ISBN 978-1-138-02988-0, 2016.
Greco, R., Comegna, L., Damiano, E., Guida, A., Olivares, L., and Picarelli, L.: Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data, Hydrol. Earth Syst. Sci., 17, 4001–4013, https://doi.org/10.5194/hess-17-4001-2013, 2013.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rainfall thresholds for the initiation of landslides in central and southern Europe, Meteorol. Atmos. Phys., 98, 239–267, 2007.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall intensity-duration control of shallow landslides and debris flows: an update, Landslides, 5, 3–17, 2008.
Hashino, M. and Murota, A.: A stochastic study on debris production in the form of landslide due to heavy rainfall. Proceedings of the Japan Society of Civil Engineers, No. 188, 33–43, https://doi.org/10.2208/jscej1969.1971.188_33, 1971.
Iida, T.: Theoretical research on the relationship between return period of rainfall and shallow landslides, Hydrol. Process, 18, 739–756, https://doi.org/10.1002/hyp.1264, 2004.
Koutsoyiannis, D., Demosthenes, K., and Manetas, A.: A Mathematical Framework for Studying the Rainfall Intensity-Duration-Frequency Relationships, J. Hydrol., 303, 215–230, 1998.
Krajewski, W. F., Ciach G. J., and Habib, E.: An analysis of small-scale rainfall variability in different climatic regimes, Hydrol. Sci. J., 48, 151–162, https://doi.org/10.1623/hysj.48.2.151.44694, 2003.
Lepore, C., Arnone, E., Noto, L. V., Sivandran, G., and Bras, R. L.: Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico, Hydrol. Earth Syst. Sci., 17, 3371–3387, https://doi.org/10.5194/hess-17-3371-2013, 2013.
Marra, F., Nikolopoulos, E. I., Creutin, J. D., and Borga, M.: Space–time organization of debris flows-triggering rainfall and its effect on the identification of the rainfall threshold relationship, J. Hydrol., 541, 246–255, https://doi.org/10.1016/j.jhydrol.2015.10.010, 2016.
Marra, F., Destro, E., Nikolopoulos, E. I., Zoccatelli, D., Creutin, J. D., Guzzetti, F., and Borga, M.: Impact of rainfall spatial aggregation on the identification of debris flow occurrence thresholds, Hydrol. Earth Syst. Sci., 21, 4525–4532, https://doi.org/10.5194/hess-21-4525-2017, 2017.
Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L. and Guzzetti, F.: An algorithmfor the objective reconstruction of rainfall events responsible for landslides, Landslides, 12, 311–320, https://doi.org/10.1007/s10346-014-0471-3, 2015.
Montgomery, D. R. and Dietrich, W. E.: A physically based modelfor the topographic control on shallow landsliding, Water Resour. Res., 30, 1153–1171, 1994.
Napolitano, E., Fusco, F. Baum, R. L., Godt, J. W., and De Vita, P.: Effect of antecedent hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy), Landslides, 13, 967–983, https://doi.org/10.1007/s10346-015-0647-5, 2015.
Nikolopoulos, E. I., Borga, M., Creutin, J. D., and Marra, F.: Estimation of debris flow triggering rainfall: Influence of rain gauge density and interpolation methods, Geomorphology, 243, 40–50, https://doi.org/10.1016/j.geomorph.2015.04.028, 2015.
Pack, R. T., Tarboton, D. G., and Goodwin, C. N.: The SINMAP approach to terrain stability mapping, 8th congress of the international association of engineering geology, 21–25 September 1988, Vancouver, British Columbia, Canada, Vol. 21, 1998.
Papa, M. N., Medina, V., Ciervo, F., and Bateman, A.: Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems, Hydrol. Earth Syst. Sci., 17, 4095–4107, https://doi.org/10.5194/hess-17-4095-2013, 2013.
Peres, D. J. and Cancelliere, A.: Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach, Hydrol. Earth Syst. Sci., 18, 4913–4931, https://doi.org/10.5194/hess-18-4913-2014, 2014.
Peres, D. J. and Cancelliere, A.: Estimating return period of landslide triggering by Monte Carlo simulation. J. Hydrol., 241, 256–271, https://doi.org/10.1016/j.jhydrol.2016.03.036, 2016.
Peruccacci, S., Brunetti, M. T., Gariano, S. L., Melillo, M., Rossi, M., and Guzzetti, F.: Rainfall thresholds for possible landslide occurrence in Italy, Geomorphology, 290, 39–57, https://doi.org/10.1016/j.geomorph.2017.03.031, 2017.
Ponziani, F., Pandolfo, C., Stelluti, M., Berni, N., Brocca, L., and Moramarco, T.: Assessment of rainfall thresholds and soil moisture modelling for operational hydrogeological risk prevention in Umbria region (central Italy), Landslides, 9, 229–237, https://doi.org/10.1007/s10346-011-0287-3, 2012.
Rasel, M. M. and Hossain, S. M.: Development of rainfall intensity duration frequency (R-IDF) equations and curves for seven divisions in Bangladesh, International Journal of Scientific & Engineering Research, 6, 96–101, 2015.
Reichenbach, P., Cardinali, M., De Vita, P., and Guzzetti, F.: Regional hydrological thresholds for landslides and floods in the Tiber River Basin (central Italy), Environ. Geol., 35, 146–159, https://doi.org/10.1007/s002540050301, 1998.
Rossi, F. and Villani, P.: Regional flood estimation methods, in: Coping with Floods, edited by: Rossi G., Harmancioǧlu, N., and Yevjevich V., NATO ASI Series (Series E: Applied Sciences), Vol. 257, Springer, Dordrecht, the Netherlands, 1994.
Rossi, M., Luciani, S., Valigi, D., Kirschbaum, D., Brunetti, M. T., Peruccacci, S., and Guzzetti, F.: Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data, Geomorphology, 285, 16–27, https://doi.org/10.1016/j.geomorph.2017.02.001, 2017.
Rosso, R., Rulli, M. C., and Vannucchi, G.: A physically based model for the hydrologic control on shallow landsliding, Water Resour. Res., 42, W06410, https://doi.org/10.1029/2005WR004369, 2006.
Salciarini, D., Godt, J. W., Savage, W. Z., Conversini, P., Baum, R. L., and Michael, J. A.: Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy, Landslides, 3, 181–194, 2006.
Scheevel, C. R., Baum, R. L., Mirus, B. B., Smith, J. B.: Precipitation thresholds for landslide occurrence near Seattle, Mukilteo, and Everett, Washington: U.S. Geological Survey Open-File Report 2017–1039, https://doi.org/10.3133/ofr20171039, 2017.
Sidle, R. C. and Ochiai, H.: Landslides: Processes, Prediction, and Land Use. Am. Geophys. Union Water Resour. Monogr, Vol. 18, American Geophysical Union, Washington, D.C., 312 pp., 2006.
Staley, D. M., Kean, J. W. Cannon, S. H., Schmidt, K. M., and Laber, J. L.: Objective definition of rainfall intensity – duration thresholds for the initiation of post-fire debris flows in southern California, Landslides, 10, 547–562, https://doi.org/10.1007/s10346-012-0341-9, 2013.
Terlien, M. T. J.: The determination of statistical and deterministic hydrological landslide-triggering thresholds, Environ. Geol., 35, 1240–130, 1998.
Van Beek, L. P. H.: Assessment of the influence of changes in climate and land use on landslide activity in a Mediterranean environment, Doctoral Thesis, Netherlands Geographical Studies 294, Utrecht, the Netherlands, 2002.
Van de Vyver, H.: Bayesian estimation of rainfall intensity–duration–frequency relationships, J. Hydrol. 529, 1451–1463, 2015.
Vessia, G., Parise, M., Brunetti, M. T., Peruccacci, S., Rossi, M., Vennari, C., and Guzzetti, F.: Automated reconstruction of rainfall events responsible for shallow landslides, Nat. Hazards Earth Syst. Sci., 14, 2399–2408, https://doi.org/10.5194/nhess-14-2399-2014, 2014.
von Ruette, J., Lehmann, P., and Or, D.: Rainfall-triggered shallow landslides at catchment scale: Threshold mechanics-based modeling for abruptness and localization, Water Resour. Res., 49, 6266–6285, https://doi.org/10.1002/wrcr.20418, 2013.
Wenzel, H. G.: Rainfall for Urban Stormwater Design, in: Urban Storm Water Hydrology, edited by: Kibler, D. F., Washington, D.C., Water Resources Monograph, 7, AGU, 1982.
Wieczorek, G. F. and Glade, T.: Climatic factors influencing occurrence of debris flows, in: Debris-flow hazards and related phenomena, edited by: Jakob, M. and Hungr, O., Praxis and Springer, Berlin Heidelberg New York, 325–362, 2005.
Wilson, R. C.: Rainstorms, pore pressure and debris flows: a theoretical framework, in: Landslides in semi-arid environment, edited by: Sadler, P. M. and Morton, D. M., pub. no. 2, 101–117, Inland Geological Society, Riverside, USA, 1989.
Wilson, R. C. and Wieczorek, G. F.: Rainfall thresholds for the initiation of debris flows at La Honda, California, Environ. Eng. Geosci., 1, 11–27, 1995.