Invited paper: Short pulse generation in mid-IR fiber lasers

Optical Fiber Technology - Tập 20 - Trang 631-641 - 2014
Darren D. Hudson1
1Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, New South Wales 2006, Australia

Tài liệu tham khảo

Jones, 2000, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science, 288, 635, 10.1126/science.288.5466.635 Hädrich, 2010, High harmonic generation by novel fiber amplifier based sources, Opt. Express, 18, 20242, 10.1364/OE.18.020242 Mark, 2009, Dark resonances for ground-state transfer of molecular quantum gases, Appl. Phys. B, 95, 219, 10.1007/s00340-009-3407-1 Thorpe, 2007, Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45–1.65 μm, Opt. Lett., 32, 307, 10.1364/OL.32.000307 Mielke, 2010, Ultrafast fiber laser platform for advanced materials processing, J. Laser Micro/Nanoeng., 5, 53, 10.2961/jlmn.2010.01.0012 Korte, 1999, Far-field and near-field material processing with femtosecond laser pulses, Appl. Phys. A, 69, 7, 10.1007/s003399900391 Sugar, 2002, Ultrafast (femtosecond) laser refractive surgery, Curr. Opin. Opthalmol., 246, 10.1097/00055735-200208000-00011 Ratkay-Traub, 2003, First clinical results with the femtosecond neodymium-glass laser in refractive surgery, J. Refract. Surg., 19, 94, 10.3928/1081-597X-20030301-03 Ambrico, 2000, Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region, Appl. Opt., 39, 6847, 10.1364/AO.39.006847 Jackson, 2002, Review Article: Diode-pumped fiber lasers: a new clinical tool?, Lasers Surg. Med., 190, 184, 10.1002/lsm.10023 Thorpe, 2006, Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection, Science, 311, 1595, 10.1126/science.1123921 Shcherbakov, 2013, Industrial Grade 100 kW Power CW Fiber Laser, Adv. Solid-State Lasers Congr., 5, ATh4A.2, 10.1364/ASSL.2013.ATh4A.2 L. Greenemeier, U.S. Navy Laser Weapon Shoots Down Drones in Test, Scientific American, 2010, [Online], Available: http://www.scientificamerican.com/article/laser-downs-uavs/. Eidam, 2011, Fiber chirped-pulse amplification system emitting 3.8 GW peak power, Opt. Express, 19, 255, 10.1364/OE.19.000255 Liu, 1997, Laser ablation and micromachining with ultrashort laser pulses, IEEE J. Quantum Electron., 33, 1706, 10.1109/3.631270 Mourou, 2013, The future is fibre accelerators, Nat. Photonics, 7, 1 Tajima, 1979, Laser electron accelerator, Phys. Rev. Lett., 4, 267, 10.1103/PhysRevLett.43.267 Payne, 1992, Active fibres and optical amplifiers, Fiber Integr. Opt., 11, 191, 10.1080/01468039208204193 Washburn, 2004, Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared, Opt. Lett., 29, 250, 10.1364/OL.29.000250 Foreman, 2007, Remote transfer of ultrastable frequency references via fiber networks, Rev. Sci. Instrum., 78, 21101, 10.1063/1.2437069 Morin, 2009, Microjoule femtosecond fiber laser at 1.6 microm for corneal surgery applications, Opt. Lett., 34, 1991, 10.1364/OL.34.001991 Jiang, 2011, Fully stabilized, self-referenced thulium fiber frequency comb, CLEO, 4365, 48105 Zhou, 2008, Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator, Opt. Express, 16, 7055, 10.1364/OE.16.007055 Ma, 2010, 37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate, Opt. Lett., 35, 2858, 10.1364/OL.35.002858 Jiang, 2012, 500 MHz, 58fs highly coherent Tm fiber soliton laser, CLEO Appl. Technol., CTh5D.7, 10.1364/CLEO_SI.2012.CTh5D.7 Kivisto, 2007, Tunable Raman soliton source using mode-locked Tm–Ho fiber laser, Photonics Technol. Lett., 19, 934, 10.1109/LPT.2007.898877 Chamorovskiy, 2012, Femtosecond mode-locked holmium fiber laser pumped by semiconductor disk laser, Opt. Lett., 37, 1448, 10.1364/OL.37.001448 Hu, 2014, Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class, Opt. Lett., 39, 2133, 10.1364/OL.39.002133 B. Samson, T. Schweizer, J. Hector, W. Brocklesby, D. Hewak, Multiphonon Decay Rates in Rare Earth Doped Chalcogenide Glasses, [Online], Available: http://www.orc.soton.ac.uk/publications/16xx/1622.pdf. Riseberg, 1968, Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals, Phys. Rev., 174, 429, 10.1103/PhysRev.174.429 Layne, 1977, Multiphonon relaxation of rare-earth ions in oxide glasses, Phys. Rev. B, 16, 10, 10.1103/PhysRevB.16.10 Almeida, 1981, Vibrational spectra and structure of fluorozirconate glasses, J. Chem. Phys., 74, 5954, 10.1063/1.441033 Lezal, 2004, Chalcogenide glasses for optical and photonics applications, J. Optoelectron. Adv. Mater., 6, 133 Gan, 1995, Optical properties of fluoride glasses: a review, J. Non. Cryst. Solids, 184, 9, 10.1016/0022-3093(94)00592-3 Wetenkamp, 1992, Optical properties of rare earth-doped ZBLAN glasses, J. Non. Cryst. Solids, 140, 35, 10.1016/S0022-3093(05)80737-9 Zhu, 2010, High-power ZBLAN glass fiber lasers: review and prospect, Adv. Optoelectron., 2010, 1, 10.1155/2010/501956 Jackson, 2012, Towards high-power mid-infrared emission from a fibre laser, Nat. Photonics, 6, 423, 10.1038/nphoton.2012.149 Erny, 2007, Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source, Opt. Lett., 32, 1138, 10.1364/OL.32.001138 Chalus, 2009, Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz, Opt. Express, 17, 3330, 10.1364/OE.17.003587 Sorokina, 2004, Cr2+-doped II–VI materials for lasers and nonlinear optics, Opt. Mater. (Amst), 26, 395, 10.1016/j.optmat.2003.12.025 I. Sorokina, E. Sorokin, A SESAM passively mode-locked Cr: ZnS laser, in Advanced Solid-State Lasers Congress, 2006, p. TuA4. T.L. Huynh, Dispersion in photonic systems, Technical report MECSE-10-2004, Monash University, Clayton, 2004. Agger, 2012, Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation, J. Opt. Soc. Am. B, 29, 635, 10.1364/JOSAB.29.000635 Xia, 2006, Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping, Opt. Lett., 31, 2553, 10.1364/OL.31.002553 Kato, 1995, Estimation of nonlinear refractive index in various silica-based glasses for optical fibers, Opt. Lett., 20, 2279, 10.1364/OL.20.002279 Nelson, 1995, Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser, Appl. Phys. Lett., 67, 19, 10.1063/1.115477 Jung, 2013, Mode-locked pulse generation from an all-fiberized, Tm–Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber, Opt. Express, 21, 76, 10.1364/OE.21.020062 H. Liu, K. Kieu, S. Lefrancois, W.H. Renninger, A. Chong, F.W. Wise, Tm Fiber Laser Mode-Locked At Large Normal Dispersion, in Conference on Lasers and Electro-Optics, 2011, p. CMK1. Kadel, 2012, All-fiber passively mode-locked thulium/holmium laser with two center wavelengths, Appl. Opt., 51, 6465, 10.1364/AO.51.006465 Q. Wang, T. Chen, and K.P. Chen, Mode-Locked Ultrafast Thulium Fiber Laser with All-Fiber Dispersion Management, in Conference on Lasers and Electro-Optics 2010, 2010, p. CFK7. Stolen, 1982, Intensity discrimination of optical pulses with birefringent fibers, Opt. Lett., 7, 512, 10.1364/OL.7.000512 Hofer, 1991, Mode locking with cross-phase and self-phase modulation, Opt. Lett., 16, 502, 10.1364/OL.16.000502 I. Sorokina, E. Sorokin, T. Carrig, Femtosecond pulse generation from a SESAM mode-locked Cr: ZnSe laser, in CLEO, 2006, p. CMQ2. Zhu, 2013, Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm, Opt. Mater. Express, 3, 1365, 10.1364/OME.3.001365 Li, 2014, Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser, Laser Phys. Lett., 11, 065102, 10.1088/1612-2011/11/6/065102 Cunning, 2011, Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration, Appl. Phys. Lett., 99, 261109, 10.1063/1.3672418 Currie, 2013, Mode-locked 2-μm wavelength fiber laser using a graphene-saturable absorber, Opt. Eng., 52, 076101, 10.1117/1.OE.52.7.076101 Rosa, 2012, Bandwidth optimization of a carbon nanotubes mode-locked Erbium-doped fiber laser, Opt. Fiber Technol., 18, 59, 10.1016/j.yofte.2011.11.003 Sun, 2010, Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes, Nano Res., 3, 404, 10.1007/s12274-010-1045-x Chen, 2010, Two-channel hyperspectral LiDAR with a supercontinuum laser source, Sensors, 10, 7057, 10.3390/s100707057 Tittel, 2003, Mid-infrared laser applications in spectroscopy, Solid-State Mid-Infrared Laser Sources, 516, 445 Szlauer, 2009, Endoscopic vaporesection of the prostate using the continuous-wave 2-microm thulium laser: outcome and demonstration of the surgical technique, Eur. Urol., 55, 368, 10.1016/j.eururo.2008.10.034 D. Hudson, S. Jackson, Fibre lasers open gateway to the mid-IR, SPIE Newsroom, 2013. Shen, 2008, Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power, Opt. Express, 16, 11021, 10.1364/OE.16.011021 Jackson, 2009, The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared, Laser Photonics Rev., 3, 466, 10.1002/lpor.200810058 Sharp, 1996, 190-Fs passively mode-locked thulium fiber laser with a low threshold, Opt. Lett., 21, 881, 10.1364/OL.21.000881 Haxsen, 2008, Stretched-pulse operation of a thulium-doped fiber laser, Opt. Express, 16, 20471, 10.1364/OE.16.020471 Wang, 2013, All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes, Appl. Phys. Lett., 103, 011103, 10.1063/1.4813108 Gumenyuk, 2011, Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser, Opt. Lett., 36, 609, 10.1364/OL.36.000609 Moulton, 2009, Tm-doped fiber lasers: fundamentals and power scaling, Sel. Top. Quantum Electron., 15, 85, 10.1109/JSTQE.2008.2010719 Solodyankin, 2008, Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber, Opt. Lett., 33, 1336, 10.1364/OL.33.001336 Zhang, 2012, Tm-doped fiber laser mode-locked by graphene-polymer composite, Opt. Express, 20, 25077, 10.1364/OE.20.025077 J. Liu, S. Wu, Q. Wang, Q.-H. Yang, P. Wang, Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber, in CLEO: Applications and Technology, 2012, p. JW2A.76. Sobon, 2013, Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber, Opt. Express, 21, 2770, 10.1364/OE.21.012797 Chen, 2008, Tm:Ho co-doped single mode optical fibre laser pumped by a 1600 nm Er fibre laser, Opt. Commun., 281, 2567, 10.1016/j.optcom.2007.12.088 Wang, 2011, Mode-locked Tm–Ho-codoped fiber, Photonics Technol. Lett., 23, 682, 10.1109/LPT.2011.2123880 Bugge, 2001, 12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells, Appl. Phys. Lett., 79, 1965, 10.1063/1.1405812 Jackson, 2007, High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers, Opt. Lett., 32, 3349, 10.1364/OL.32.003349 C.A. Codemard, J. Ji, J.K. Sahu, J. Nilsson, 100-W CW cladding pumped Raman fiber laser at 1120 nm, in Proc. SPIE 7580, Fiber Lasers VII: Technology, Systems, and Applications, 2010, vol. 7580, no. 0, p. 75801N. Walsh, 2009, Review of Tm and Ho materials; spectroscopy and lasers, Laser Phys., 19, 855, 10.1134/S1054660X09040446 Wei, 2013, Numerical investigation on high power mid- infrared supercontinuum fiber lasers pumped at 3 μm, Opt. Express, 21, 29488, 10.1364/OE.21.029488 Hudson, 2012, Highly nonlinear chalcogenide glass micro/nanofiber devices: design, theory, and octave-spanning spectral generation, Opt. Commun., 285, 4660, 10.1016/j.optcom.2012.05.002 Hudson, 2011, Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy, Opt. Lett., 36, 1122, 10.1364/OL.36.001122 Yeom, 2008, Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires, Opt. Lett., 33, 660, 10.1364/OL.33.000660 Marandi, 2012, Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm, Opt. Express, 20, 24218, 10.1364/OE.20.024218 Pollnau, 2001, Erbium 3 μm fiber lasers, Sel. Top. Quantum Electron., 7, 30, 10.1109/2944.924006 Pollnau, 2002, Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers, Quantum Electron. IEEE J., 38, 162, 10.1109/3.980268 Fortin, 2013, Towards the development of fiber lasers for the 2 to 4 μm spectral region, Opt. Eng., 52, 054202, 10.1117/1.OE.52.5.054202 Tokita, 2009, Liquid-cooled 24 W mid-infrared Er: ZBLAN fiber laser, Opt. Lett., 34, 3062, 10.1364/OL.34.003062 Faucher, 2011, 20 W passively cooled single-mode all-fiber laser at 2.8 μm, Opt. Lett., 36, 1104, 10.1364/OL.36.001104 Faucher, 2009, Erbium-doped all-fiber laser at 2.94 μm, Opt. Lett., 34, 3313, 10.1364/OL.34.003313 Frerichs, 1996, Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7 μm, Opt. Fiber Technol., 358, 10.1006/ofte.1996.0041 Wei, 2012, Passively continuous-wave mode-locked Er(3+)-doped ZBLAN fiber laser at 2.8 μm, Opt. Lett., 37, 3849, 10.1364/OL.37.003849 Haboucha, 2014, Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er3+: fluoride glass fiber laser, Opt. Lett., 39, 3294, 10.1364/OL.39.003294 S. Tokita, M. Murakami, Graphene Q-switching of a 3 μm Er: ZBLAN fiber laser, in Advanced Solid-State Lasers Congress, 2013, p. AF2A.9. Hudson, 2011, 1 W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser, Electron. Lett., 47, 985, 10.1049/el.2011.1907 Hudson, 2013, Single-frequency fiber laser operating at 2.9 μm, Opt. Lett., 38, 2388, 10.1364/OL.38.002388 Hu, 2013, High peak power actively Q-switched Ho3+, Pr3+-co-doped fluoride fibre laser, Electron. Lett., 49, 766, 10.1049/el.2013.0134 Li, 2012, Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror, Opt. Lett., 37, 3747, 10.1364/OL.37.003747 Li, 2012, Tuned cascade laser, Photonics Technol. Lett. IEEE, 24, 1215, 10.1109/LPT.2012.2197743 Engelbrecht, 2008, Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ, Opt. Lett., 33, 690, 10.1364/OL.33.000690